

18TH JUNE 2020

Initial Experiences of Premium Rail Steels on London Underground

Andy Vickerstaff, Principal Engineer Track Components & Configuration, Transport for London

Contents

- Changing rail failure modes
- Initial premium rail installations
- Identified issues
- Performance Indicators
- Developing the Strategy

Wear Dominated Railway

Wear Dominated Railway

⁵ RCF/Corrugation Dominated Railway

RCF leading to UUR

Why is it untestable?

Wheel-Rail Forces

Whole Life Rail Model

400m v 200m Radius Curves

S-Stock 260 v 335: High Rail

S-Stock 260 v 335: Low Rail

Cant Def v Torque: W2L for 92TS

¹⁶ Broken Premium Rail

¹⁷ Severe Defects in Premium Rail

200m Curve in HP335

260

335

400m Curve in HP335

335

260

12MGT

18MGT

High Rail Wear

Low Rail Wear

Rail Deflection: Trackform

Rail Deflection: Flash Butt Welds

Crack Angle

Plastic Deformation

	HP 335	R260
Depth of Deformation		135 – 293 μm (Mean 206 μm)
Crack Initiation Angle	22 - 47° (Mean 36°)	23 - 65° (Mean 34°)

Conclusions

- Crack initiation angle appears similar but turns much more quickly in 335
- LUL suffers from centre railhead cracks caused by trailing axles in tightest curves
- Leads to mainly UUR with very shallow crack depths in 260 but lower risk of leading to fast fracture in 335
- Rail deflection certainly appears to be a contributing factor as sites with new track with less issues?
- Depth of work hardening layer much greater in 260 providing a layer of protection?
- Higher wear in gauge corner removing cracks at sufficient rate?
- 80% of the cost of re-railing is in the process so very little performance improvement to justify extra material costs
- Currently trialling a 400 grade heat treated site but very interested in bainitics because....

Is wear a bad thing?

