

Survey and modeling of wheel-rail creep forces

Edwin Vollebregt & Niels van der Wekken ICRI WebEx, July 28, 2020.

Vtech CMCC

Providing research, custom & standard software. Supporting design, optimization & troubleshooting.

Enjoying the study of contact mechanics.

Importance of wheel-rail contact forces

Curving behavior

Ride quality

Switches and crossings

Traction and braking

I ow adhesion

Flange climb

Hunting motion

Dynam

Corrugation

Wear

Squeal noise

Rail rollover

Dynamic amplification

Track-shifting forces

Wheel flats

Track friendliness

Crack initiation

Crack growth

(picture: Ch. Weidemann)

RCF

Simulation of vehicle-track interaction

Extended simulation approach

Automated contact detection

Automated contact analysis

3D contact search, including the yaw angle

Conformal contact analysis

Automatic construction of curved reference surface

Behavior of railway creep forces

Behavior of railway creep forces

Deviations from Kalker's original theories

Factors affecting friction

Effects of:

- fluids,
- third body layers,
- temperature,
- roughness ...

Effects of surface roughness

- Contact happens at tips of asperities
- Actual contact may be 1 30% of nominal contact area
- Asperities may deform plastically.

 In case of lubrication, there's a strong effect of surface roughness on macroscopic friction

- For dry contacts, roughness has little or no influence on the (maximum) level of friction.
- The initial slope seems not to be affected by surface roughness.

Effects of surface temperature

- Sliding generates considerable heat input.
- Diffusion is slow compared to the time in contact.
- High temperatures may be produced in a layer near the surface.
- Load + creepage + speed.
- Good models available in the literature.
- Implemented in CONTACT for non-Hertzian + steady rolling.

Effects of surface temperature

- Oxidation changes with surface temperature.
- Melting occurs.
- High temperature is one cause of falling friction.
- Mainly on full scale locomotives.
- Implemented in CONTACT using a piece-wise linear dependence.

(Lim, Ashby & Brunton)

Effects of solid third body layers

- A layer is formed of wear particles,
 - hematite Fe₂O₃
 - magnetite Fe₃O₄
- · Rain, humidity,
- Contaminants,
 - dust, leaves
 - sanding
 - oil leakage, cargo spills
- Applied agents
 - grease, lubricant
 - friction modifier

Effects of solid third body layers

- Particles are formed, rearranged, deformed, crushed.
- The layer may be compacted first, then show work-hardening or work-softening behavior.

Effects of solid third body layers

A plasticity model is implemented in CONTACT.

$$\begin{cases} \|\vec{\tau}\| \leq g & g = \min(\mu p_n, \tau_c) & \text{traction bound} \\ \vec{s} \parallel -\vec{\tau} & \|\vec{\tau}\| < \mu p_n \to \vec{s} = \vec{0} & \text{slip} \\ \delta \vec{u}_{pl} \parallel -\vec{\tau} & \|\vec{\tau}\| < \tau_c \to \delta \vec{u}_{pl} = \vec{0} & \text{plastic deformation} \end{cases}$$

With different work-hardening characteristics.

$$\begin{cases} \tau_c = \tau_{c0} + k_\tau \cdot u_{pl}^* & \text{yield stress} \\ u_{pl}^* = \int |\vec{u}_{pl}| \; dt & \text{accumulated plast. def.} \end{cases}$$

Measurements on SUROS twin-disk machine

Dry
Wet
Solid Lube
Lignin + water
Soap + water
Track grease

Simulations with Extended CONTAC

Measurements from (Fletcher & Lewis)

Further measurements & simulation

Measurements at Virginia Tech

Including angle of attack, longitudinal and lateral forces.

Effects of fluids

Different regimes are distinguished based on the amount of fluid

- Totally clean e.g. using plasma torch, high vacuum
- Boundary Lubrication "one molecule"
- Mixed Lubrication asperity contacts, load sharing
- EHL minimum film thickness, affected by elastic deformation
- Hydrodynamic Lubrication continuous film

Effects of fluids

- "Clean wheels" are in the BL regime affected by humidity, traces of oil and other contamination.
- "Wet rails" may be in ML or EHL regimes friction reduces as speed increases.
- "Rain + 3BL" may lead to a slurry, HL regime with viscous fluid.
- "Leaves + humidity" may lead to ML with low μ at asperities.

Summary and conclusions

- Frictional heating causes high surface temperatures, reducing friction, especially for locomotives at large creepage.
 - Good models available for temperature itself
 - Less so for its effect on friction

- 2. All kinds of solid interfacial layers occur, with different strength characteristics.
 - High pressure torsion testing: increasing / constant / decreasing
 - Viewed as compacting & rearranging, rolling, sliding & deforming
 - Modelled with plasticity with work-hardening / softening

Summary and conclusions

- 3. Fluids occur in different lubrication regimes
 - Water + high speed: mixed → elastohydrodynamic lubrication
 - Low adhesion, cleaning: viscous paste, slurry
 - No complete model is provided in the literature

- 4. Surface roughness governs friction on microscopic scale.
 - Little effect on macroscopic scale in dry friction.
 - Large effects on ML & EHL lubrication regimes.

Temperature + Plasticity implemented in CONTACT.

Fluids + Roughness remain to be done.

Thank you for your attention.

This work was supported by the FRA under contract DFTR 5317 C00012

Edwin Vollebregt

