

VIRTUAL VEHICLE Research Center

ICRI – Friction Modelling

Klaus Six Virtual Vehicle Research Center Edwin Vollebregt VORtech

ICRI – Friction Modelling Task

Recent Discussions about Wheel-Rail Creep Forces and their Consequences

Task leaders:

- Klaus Six (VIRTUAL VEHICLE Research Center)
- Edwin Vollebregt (VORtech)

Task activities so far

- Several WebEx discussions 2013 2014
- Presentations at
 - Railways 2014
 - Rail Tech Europe 2014
- Development of project outline
- Several related activities

Wheel/Rail Interface Optimization

Simulation model

Wheel/Rail Interface Optimization

Simulation model

High relevance of reliable creep force prediction models

Creep Force Characteristics

Creep force depends on:

- Creepages
- Vehicle velocity
- Normal load and geometry
- Contact conditions
- Frequency range
- etc.
- ⇒ Complex behaviour
- ⇒ How to model friction?

Examples for Enhanced Modelling

[Tomberger2011, Meierhofer2012, Six2015]

⇒ Several approaches available

T1077: Low Adhesion – impact of low amounts of water

Adhesion & water in wheel / rail contact

- Adhesion values known for dry and wet conditions
- But: Adhesion as a function of amount of water / water rate ??

Rocking Phenomenon

Roller rig – eigenmodes:

Vertical motion:

- 1. In phase on bushing
- 2. Out of phase on contact spring

Horizontal motion:

- 3. In phase against bushings
- 4. Out of phase against bushings

Angular motion:

- 5. (Free) rolling motion
- 6. Rocking motion

Rocking Phenomenon

The whole wheel may rock as a rigid body:

- The frequency f depends on:
 - the masses
 - the moments of inertia
 - the tangential stiffness K_x
- The stiffness K_x depends on:
 - the materials used,
 - the normal load,
 - contact geometry,
 - saturation of tangential force
- The amount of damping is unknown

rigid body mode

10

Rocking Phenomenon

- Transient effects don't die out quickly.
- The contact force has a tendency to oscillate.
- This is a rigid body vibration, with floating frequency f
- Rocking is triggered by sudden changes like dipped joints or welds
- It may explain short pitch corrugation as well.

(picture: S.Grassie)

Rocking Phenomenon

Seeking assistance for a proposed experiment

Rubber rollers, to reduce the oscillation frequency

Torque fluctuation, to trigger resonance

Demonstrate that rocking exists & validate its predicted properties

Futur Outlook

Relevant Issues

- Implementation in MBD simulations
 - To avoid extensive field-testing of FM materials
 - To enable detailed stress-calculation for damage modelling
- Further validation
- Modelling of contaminants
 - e.g. Friction Modifiers (FRA call)
- ... ?

Thank you for your attention

Contact:

Klaus Six klaus.six@v2c2.at

Edwin Vollebregt edwin.vollebregt@vortech.nl