

ICRI Residual Cracks

WebEx 06JUL17

Eric Magel, Principal Research Engineer

Example: High rail, freight

Example: Low rail, freight

Initial After 3 passes

Preventive Rail Grinding

Problem

It is common practice in rail grinding to apply only a limited number of passes, not necessarily to remove all cracks.

The residual cracks

- Are they dangerous? Benign? "Better" or "worse" than new cracks?
- How much residual cracking is "OK"?

Q1: Are residual cracks dangerous? Benign? "Better" or "worse" than new cracks?

Classical "new" cracks

initial propagation angle approximately 10°

1 pass grinding: approx. 0.25 mm

later stages propagation angle approximately 40°

"Residual" cracks

Q1: Are residual cracks dangerous? Benign? "Better" or "worse" than new cracks?

Residual crack

Residual	Crack type	New
Shorter	Length (at same depth)	Longer
Straight	Subsurface path	Curved
Steeper	Angle at crack tip	Shallower or same
Older/fretted/smoother?	Crack faces	Younger, rougher (?)
More contamination and corrosion	Crack interface	Less contamination or corrosion
Less strained, possibly softer (?)	Steel properties	More strain hardened

Classical "new" cracks

Sample #7

2-2.5mm deep cracks

RCF at 15 MGT Cycles - BNSF

Residual versus Classical cracks

Observation:

Very few "classical cracks" seem to exist in practice

Question:

Even if/where they do exist, as soon as they grow longer than a fraction of a millimeter, are they much different than residual cracks?

Q2: How much residual cracking is "OK"

Preventive Rail Grinding

Preventive grinding

How much residual cracking is OK?

- "The only good crack is a dead crack!"
- Residual cracks
 - Compromise ultrasonic detection
 - Reduce strength of rail steel
 - More rapid deformation and wear
 - Increase risk of rail breakage
 - o service failures, derailments
- "OK" is defined according to cost, risk, logistical limitations, current state of wear, rail steel, position on rail, season, etc.

Conclusions

- In practice rail condition is dictated by residual cracks.
 - i.e. railroads are already dealing with residual cracks.
- "how dangerous are residual cracks?"
 - "how dangerous are RCF cracks
 - of this surface length
 - of this subsurface depth
 - at that position (gauge, crown, field)
 - having this density (# cracks/inch)
 - having this angle, this shape, etc."

Conclusions (cont'd)

- Several existing ICRI projects looking at RCF cracking and grinding addressing "generic" questions
 - ICRI-Quantify Surface Fatigue
 - ICRI-Magic Wear Rate
 - ICRI-Predictive Grinding
 - ICRI-Performance of Rail Before First Grind
 - o ICRI-Safety
 - → Close ICRI-Residual Cracks topic

Reminder!

