Field Characterization of Rail Friction

DON EADIE AND HAROLD HARRISON

ICRI WEBEX DECEMBER 12 2017

Overview

- Background
- Characteristics of OnTrak tribometer
- Goals of Project
- Test plan and needed site characteristics
- Summary

Background

- Wheel / Rail friction is a fundamental parameter influencing RCF and wear
- Multiple methods* have been used to measure "rail friction", each with drawbacks, e.g.
 - BR tribometer train
 - Salient push tribometer
- Results from different instruments cannot be compared
 - Creep level unknown and likely variable
- Traction / creepage relationship unknown / difficult to measure under real world conditions
 - Impacts accuracy of dynamic models

^{*}ICRI conference presentation, Vancouver, August 2017

Factors affecting friction levels

Creep (slip)

Contact pressure _

Third Body layer: accommodating velocity differences

Wheel and rail roughness

OnTrak tribometer characteristics

- Variable vertical load (Hertzian stress)
- Variable angle of attack between measuring wheel and rail (varying creep force)
- Varying lateral position on rail
- Measure 30 cm rail length forward and back

On Trak tribometer variables

Lateral position

Vertical force variable: used 45 N, approx. 660 Mpa (heavy wheel)

Angle of attack (mrad) variable: we ran equivalent of 5% slip

▶ What are the 'Real' numbers?

► Correlation with other Techniques

► Correlation with Early/Late Beam Design

TTCI's (non-Stiffened Beam) vs New (Stiffened Beam) Tribometer, RCFS North Rail

► Early Lab Tests

► Early Lab Tests

New developments:

► OnTrak tribometer: Early Field and Lab Results

Project Goals

- Use OnTrak tribometer to better understand rail friction variations under controlled measurement conditions:
 - Curves / tangent/ gradient / transverse position etc
 - Traffic effects
 - Lubrication / FM effects
- Develop traction / creepage curves under real world (variable) conditions
- Define operational best practices: (load, AOA, wheel cleaning etc), scaling to larger wheels
- 4. Relate friction / creepage to interfacial layer composition by sampling / analysis collaboration with U of Sheffield

Test site(s) requirements

Needed

- Access to measure rail: sharp curve, tangent track.
- 3-4 one day visits spread over different weather conditions, 4-6 hours measurement (traffic dependent)
- ► If TOR present, ability to shut off for 2-3 days prior

Preferred

- Active L/V measurement site on curve with data available
- In or close to BC or Washington State
- > Road accessible

Third Body Layer Composition

- Third Body composition / shear strength is closely tied to friction and traction / creep curves
 - Iron oxides and wear particles influenced by wheel / rail interaction, temperature, humidity and traffic patterns
- New sampling technique developed by University of Sheffield plus new powder X-ray diffraction analysis showing promise in UK testing
- Samples will be collected in parallel with friction testing, and sent to Sheffield of analysis

Summary

- Systematic examination of friction / creep relationship with new tribometer
- Outputs:
 - Detailed mapping of friction / creepage under a range of conditions
 - Develop methodology and best practices
 - Composition of Third Body layer related to friction levels
- We need help in identifying suitable site(s)!