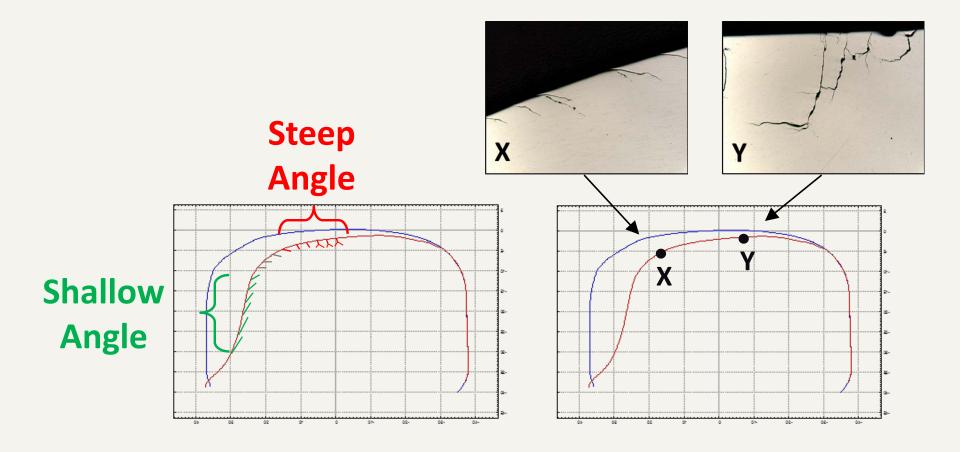

RCF - Current Approach

Inspection Methods

- Visual surface assessment
- Non-destructive:
 - Dye penetrant
 - Magnetic particle
 - Walking stick (Rohmann, MRX, Sperry)
- Destructive:
 - Cutting
 - Milling
 - Metallography
 - LOM, SEM

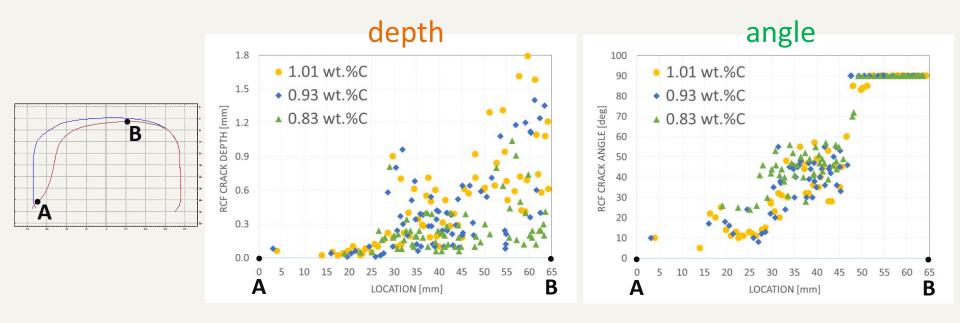

Factors to Consider

- Rail type
- Position in curve
- Track curvature
- Lubrication
- Traffic:
 - Axle load
 - MGT accumulation
 - Frequency
- Maintenance practices
 - Grinding/Milling
 - Frequency
 - **Amount**

Outcomes to Evaluate

- RCF location:
 - TOR vs. GF
- RCF severity:
 - Mild vs. Severe
 - Depth of spalling
- RCF crack morphology:
 - Length, depth, angle to rail surface, density & distribution, amount of branching
 - Propagation in rail microstructure
 - Trans-granular vs. intergranular fracture
 - Assisted by inclusions (rail cleanliness)

Quantifying Rail Surface Damage Metallography of Crack Morphology



2

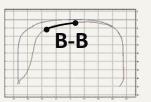
Quantifying Rail Surface Damage Metallography of Crack Morphology

- High rail quantitative RCF assessment on a 5 degree curve
- RCF crack depth & angle analyzed in three rail types with varying Carbon content

3

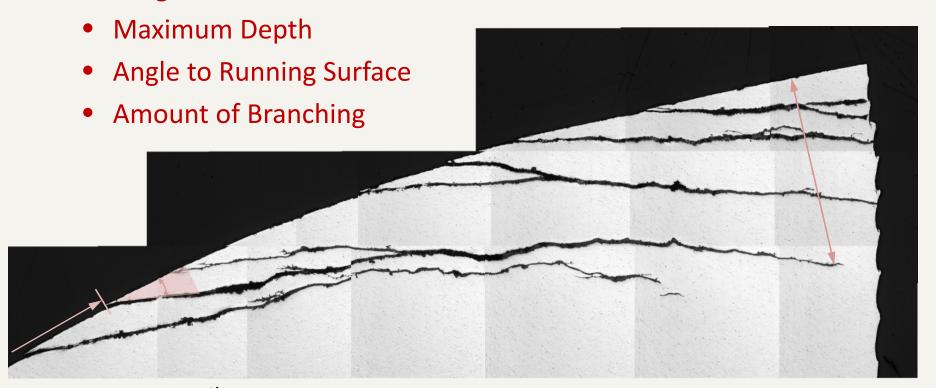
Quantifying Rail Surface Damage – RCF Matrix

	MGT												
	0 -	50 -	100 -	150 -	200 -	300 -	400 -	500 -	600 -	700 -	800 -	900 -	>
Curvature	49	99	149	199	299	399	499	599	699	799	899	999	1000
0.0 - 0.9													••
1.0 - 1.9				•			•		**	••			
2.0 - 2.9			• •		•			• •					
3.0 - 3.9		•		• •				•					
4.0 - 4.9					••	•							
5.0 - 5.9							••						
6.0 - 6.9				•									
7.0 - 7.9		• •				•		•					
8.0 - 8.9		•	•	•									
9.0 - 9.9													
> 10.0													


Example:

• 40 rails placed in the matrix

Layers to Consider:


- High & Low Rails
- Rail Grade (i.e. standard, intermediate, premium)
- Track Curvature (i.e. variable radius)
- Tonnage Accumulation (i.e. variable MGT in rail life-cycle)
- Running Surface Condition (i.e. dry, lubricated, TOR friction modified)
- Traffic Type (i.e. axle load, train speed)
- Maintenance Grinding (frequency and amount)

Quantifying Rail Surface Damage Metallography of Crack Morphology

RCF Morphology:

- Position on Rail Surface
- Length

BNSF-7 rail: 2-Deg curve, high rail 1994 (most likely premium rail)

Rails for RCF Matrix

Rail Request:

- 40 rails (1-3 foot sections, 1m max)
- Preference is on premium rails, but intermediate and/or standard rails considered as well
- Mixed or heavy axle load environment
- High rail location (1-10 degree)
- Visible RCF on TOR and/or GF locations (>100MGT tonnage accumulation)
- All friction environments (dry, lubricated, TOR FM)
- All grinding environments (with or without maintenance grinding)

Send rails to NRC of Canada:

Attn: Daniel Szablewski

National Research Council (NRC) of Canada

2320 Lester Rd., Building U-89, Ottawa, ON, Canada, K1V 1S2

Email: Daniel.Szablewski@nrc-cnrc.gc.ca

Cell: (613) 462-9396