

Outline

- Introduce current status of friction modifying material development and evaluation
- Set objectives for laboratory testing
- Review current practice of field evaluation
- Use of field trail results in refining laboratory objectives

Goal

- Create a lab testing regime to qualify materials
- Create a best practice for setting up field trials

Current State of Friction Modifier Evaluation

From a railroad's perspective:

- No standard testing protocol of material properties and performance criteria is available for manufactures to use in development of friction modifying materials for railroad use
- Many manufacturer's use tests designed for different applications of greases and lubricants which provide useful information about a particular product, however, these tests often do not represent performance in a wheel/rail environment
- Based on National Lubricating Grease Institute, NLGI

Consequently,

- Products cannot be qualified or differentiated prior to field testing
- Suppliers spend time and resources creating and marketing products based on their perspective of success
- Consumers must vet out many products which is time consuming, costly, and nonstandard

Objectives for Laboratory Testing

Grease – material used at the gage corner of the rail, protects wheels and rail from wear due to high curving forces

Top-of-rail friction modifier (TOR) -

material used on the top-of-rail to control frictional forces of the wheel/rail interface

Material Stability – will the product components separate

Report temperatures at which the properties of the material changes

Grease – characterize the tackiness and stringiness

Material Mobility – will the product move; in tank, through pump, to track

Grease – needs to pump at low temperatures, standup in high temperatures stick to rail/wheels at all temperatures

Objectives for Laboratory Testing

Rheological Properties -

- Use of testing devices standard to material manufacture pin on disk, penetration
- Expanded use of Amsler-type twin disk tribometer
 - Could allow for performance evaluation of modifier material
 - Test various parameters
 - How long does a material remain effective
 - How much damage occurs with a set number of cycles and application

Other common testing?

Current Practice of Field Evaluation

Selection of Location –

- Consistent traffic mix
- Predominate flow of traffic in one direction
- Moderate to high degree of curvature over the distance to be evaluated
 - Typical distances 2, 4, 8 mile spacing of application sites
 - Curvature common to report a normalized total angle of curvature based on degrees and length of curves
- Accessible
- Consistent and predictable environmental factors

Units and Products –

- Reduce introduction of unnecessary variables
- Reliable equipment
- Frequent monitoring

Duration -

• Consistent number of axles for each product

Current Practice of Field Evaluation

Product Evaluation Criteria:

- Carry distance how far a product can been seen away from the application area
- Time to saturation & dry down
- Product delivery to the wheel/rail interface
- Product pick-up and waste
- Product pumpability
- Each point above is documented over the life of the trial

For Greases:

- Swipe test to see evidence of product on the rail at prescribed locations
- Portable tribometer used to supplement swipe test

For Friction Modifiers:

- Rail forces monitored at selected instrumented sites
- Compare times with product to baseline force data (lateral forces)

Field Trials Refine Laboratory Objectives

After field trails are concluded on various products:

- Results should be shared with the supplier/manufacturer
- Compare trial results with laboratory expectations
- Create benchmarks for accepted laboratory testing based on the field evaluation of superior performing materials

Does the laboratory testing regime adequately represent the field trail performance?

