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Wheel flats

= A wheelflat is a discrete type of wheel out-of-roundness and is a wheel tread defect.

= A deviation from the nominal wheel radius occurs at a wheel flat, which is relatively much shorter in length with
respect to the wheel circumference.

= This deviation can generate a significant dynamic impact force on railway track, relating to the length of the flat,

the diameter of the wheel, the speed of the train, the static wheel force and the equivalent stiffness of the rolling
stock-railway track system.

http://www.mermecgroup.com/inspect/train- https://ar-tech.com.au/wheel-brake-monitoring/
monitoring/1024/wheel-impact-load.php



Adverse effects of wheel flats

= The interaction of the wheel flat with the railhead is a highly indeterminate problem.

= This interaction before the impact and after the impact generates dynamic impact forces with high frequency and
low frequency content that decays and repeats with each revolution of the wheel.

= The peak forces can reach to ~4 times the static wheel forces that can lead to railhead and wheel plastification
and RCF.

= The condition is further complicated with the fact that the formation of the wheel flat can change the crystalline
phase of the both the wheel at the vicinity of the flat and the rail due to high temperatures that can occur during
sliding.

= Therefore, damage caused by the wheel flat can be both mechanical and thermal.



Adverse effects of wheel flats

= At the minimum, wheel flats generate noise and vibrations.

In the worst case, the high dynamic impact forces that develop can damage the railhead and the wheel.

The complicated nature of the interaction calls for advanced time iterative numerical methods of analysis on
mechanical models and/or detailed instrumentation along actual railways and on trains.



The first paper where the proposed method was introduced

Available online at www sciencedirect.com
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Development of a new and an explicit analytical equation that
estimates the vertical impact loads of a moving train

Dr. Niyazi Ozgiir Bezgin*

“Istanbul University, Civil Engineering Department, Avelar Campus, 34320, Istanbul

Abstract

One can only estimate the dynamic vertical impact loads under motion, since there are many effective parameters some of which
are unrepresented in an equation and since the values of the considered parameters are not deterministic but estimations. Many
empirical and semi-empirical equations in the literature correlate dynamic impact loads to train speed and measurable aspects of
train and track components. These aspects frequently relate to track and train geometry and stiffhess. However, the development
of these eguations relies on load and deflection measurements from particular in-service tracks or especially set-up test tracks.
The constants that frequently appear in these equations are particular to the conditions that generated them. Therefore, one lacks
an explicit understanding of these equations unless one takes the time to investigate in detail the particular study and the
particular set of data that generated these equations. Train speed limits also bound the applicability of these equations. This paper
concentrates on the development of an explicit mathematical equation aimed to provide an explicit analvtical estimate for the
dynamic impact loads that develop on any railway track by the axles of a moving train. This paper introduces the concept of
impact reduction factor and introduces a new equation that relies on the principle of conservation of energy and kinematic
principles along with the impact reduction factor to estimate the impact loads generated by a moving train.

© 2017 The Authors. Published by Elsevier Ltd.
Peer-review under responsibility of the scientific committee of the International conference on Transportation Geotechnics and
Geoecology.

Keywords: Train speed; track stiffness; track deformation; dynamic impact load; impact load factor.




Bezgin Method: An analytical approach that offers support to the
engineer/researcher, before he or she resorts to more advanced methods

= The proposed method has been applied to track roughness in the form of track profile variation and track stiffness
variation.

= When applied to wheel flats, it yields an explicit analytical approach that considers the effects of the following
parameters on the dynamic impact forces due to wheel flats:

1. Wheel flat length
2. Wheel diameter
1 ’
3.  Train speed K 83 "
. B3,H
4, Track stiffness

5. Primary and secondary spring stiffness’

o. Hertzian contact deformation



A wheel flat generates a potential energy for the tributary mass
of the wheel

A part of this energy imparts onto the track-rolling stock equivalent stiffness system and temporarily stores as the
potential energy of this equivalent stiffness system.

= As a results of this energy transfer, the dynamic impact force F; of the wheel differs from the static force of the
wheel F, in relation to the train speed, length of wheel flat, wheel radius and system stiffness.
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Bezgin - Kolukinik Equations

= An explicit analytical method to estimate the peak forces due to wheel flats.
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= Vv isthe translational train speed.
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.1
= 2 * arcsin—
= a’ isthe deflection of the equivalent system stiffness. ¢ D



Numerical analysis for the effects of wheel flats

Uzzal, A. R., Ahmed, W., Rakheja, S. Dynamic Analysis of Railway Vehicle-Track Interactions due to Wheel Flat with a Pitch-Plane Vehicle
Model. Journal of Mechanical Engineering. Vol. ME39, No.2, December 2008.

Zhai, W.M., Cai, C.B., Wang, Q., Lu, ZW., Wu, X.S. Dynamic effects of vehicles on tracks in the case of raising train speed. Proceedings of
the Institution of Mechanical Engineers, Part F, v 215, p.125-135, 2001.
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Comparison of estimates
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Numerical analysis for the effects of wheel flats

Bjan, J., Gu, Y., Murray, H.W. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis. Vehicle
System Dynamics: International Journal of Vehicle Mechanics and Mobility. DOI: 10.1080/00423114.2013.774031. March 2013.
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Comparison of estimates

6. Second verification study

Bjan, J., Gu, Y., Murray, HW. A dynamic wheel-rail impact analysis of railway track under wheel flat by finite element analysis. Vehicle

System Dynamics: International Journal of Vehicle Mechanics and Mobility. DOI: 10.1080/00423114.2013.774031. March 2013.

modelling. Wear. 265, p.1349-1355. 2008.

Zilli, L., Zhao, X., Esveld, C., Dollevoet, R., Molodova, M. Investigation into the causes of squats-correlation analysis and numerical

Wheel spring stiffness used in this study is k,=1.15 MN/m (6.6 kip/in), the rail pad stiffness is k,=1300 MN/m (7,413 kip/in), the ballast

stiffness per rail seat is k,=45 MN/m (257 kip/in). This study excludes Hertzian contact stiffness.

The rail is an Australian standard type AS-60 rail. The wheel diameter is 915 mm (36 in) and the center-to-center sleeper spacing is s=68.5

em (2.25 ft). The authors conduct an array of analysis for train speed v=72 km/h (44.7 mph) and a static wheel force of F.=128 kN (29 kips)
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Comparison of estimates

Table 2. Geometric and Mechanical Track and Rolling Stock
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Baeza, L., A. Roda, and J. C. O. Nielsen. Railway Vehicle/ Track Interaction Analysis using a Modal
Substructuring Approach. Journal of Sound and Vibration, Vol. 293, 2006, pp. 112-124.



Wheel impact load detectors or instrumented special tracks

http://www.trackiq.com.au/WCM.html

Newton, S. G., and R. A. Clark. An Investigation into the Dynamic
Effects on the Track of Wheelflats on Railway Vehicles. Journal of
Mechanical Engineering Sciences, Vol. 21, No. 4, 1979, pp. 287-297.
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Review Article:

Review on condition monitoring approaches for the detection of railway wheel defects.
Alireza Alemi, Francesco Corman, Gabriel Lodewijks Faculty of Mechanical, Maritime and Material Engineering (3mE), Delft

University of Technology, The Netherlands
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Comparison of estimates
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Figure 9. Dynamic impact force estimates and measurements from the paper by Newton and Clark (/5): (a) train speed v = 23 km/h,
(b) train speed v = |17 km/h.
Note: BOEF = beam on elastic foundation; BP8 = load measuring base plate and plate number; DSM = discrete support model.

Newton, S. G., and R. A. Clark. An Investigation into the Dynamic Effects on the Track of Wheel flats
on Railway Vehicles. Journal of Mechanical Engineering Sciences, Vol. 21, No. 4, 1979, pp. 287-297.



An improved estimate of system deflection a’ improves the
estimate for K’;,

21.
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Constituents of the tributary wheel mass and system stiffness

= Components of the tributary wheel mass:

1. m, = Mass of the wheel, mass of brake disk per wheel, mass of axle rod

per wheel
2. m,, = Tributary mass of the bogie per wheel kb Z
3. m, = Tributary mass of the body per wheel _L

o= [Ppg L
m;=m, + m,, + m, = Lrjs

= Stiffness components of the system:

-“‘.-. ",'v
1. k= Stiffness of the track per wheel i
2. k, = Primary wheel spring K <
-

3. Kk, =Secondary body spring



Stiffness elements that support the tributary mass components

= Equivalent stiffness value supporting the mass components:

1. k:Supporting the wheel/break disks and the axle

1 . . <
2. kyandk = (ki—-l__ll() : Supporting the bogie kb =
3. kr= % - Supporting the body J_
(E——— kw= [Mpo L[J -




Estimation of the system deflection if mass details are known

= Components of the total static wheel force:

1. F,=m,.g=Weight of the wheel/break disk/half the axle rod

2. F,,=my,.g =Weight of the tributary bogie mass

kb »

3. F,=m,.g= Weight of the tributary body mass .

FumFut gt F K- Mo

s w bo b — . .
o ;I: L S
=  Components of the total static system deflection:

1. a’, =F,/ k= Deflection contributed by the wheel — i
2. a'y, = Fyo/ Ky = Deflection contributed by the bogie - _',_,- -
3. a'y=F,/ k;= Deflection contributed by the body IS :{'

a'=a, +tapta)y =

03 2.1y

gy =1+ 2.sin—

2\ a.@. /g




Estimation of the system deflection if mass details are unknown

Total static wheel force: F, = 85 kN, 125 kN... etc

. . 1 A.
» Equivalent system stiffness: kp = @ :33 =1 + Z.Sil]? - 2.1y
i T T 2\ a.@. /g

Equivalent system deflection: a’ = F, / k;

If the primary and secondary stiffness elements were absent, the total tributary mass would be supported by the
stiffness of the track only and this would be the stiffest support condition.



K’;; provides a manual way to estimate the peak forces
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K’;; provides a manual way to estimate the peak forces
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Increasing dynamic impact forces with increasing wheel curvature
Resultant static wheel force known, mass distribution unknown

 v=100 km/h

« k=60kN/mm
* Kk, =10 kN/mm
* k, =5 kN/mm

* m;=7,825Kg
e F,=76.8kN

- p 21lv
;33 1 + 2.sin E ! \/—
ﬂ I¢' r-g
(o)
\\\\ ‘.m“...m..“. r
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-~ ¥5p- D ¢ 1
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Estimated Dynamic impact Force Factors due to Wheel Flat
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Increasing dynamic impact forces with increasing wheel curvature

Mass distribution known

 v=100 km/h

« k=60kN/mm
* Kk, =10 kN/mm
* k, =5 kN/mm

* m,=900 kg

* my,=1,300 kg
* m,=5,625 kg

e F,=76.8kN

2.1
gy =1+ 2.sin Y v

2\ a.@ g

Estimated Dynamic impact Force Factors due to Wheel Flat
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Decreasing dynamic impact forces with increasing static wheel

force. Mass distribution known

 v=100 km/h

« k=60kN/mm
* Kk, =10 kN/mm
* k, =5 kN/mm

* m,=900 kg

* my,=1,300 kg
* m,=9,375 kg
 F,=113.6 kN

gy =1 + 2.sin

P

2
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Estimated Dynamic impact Force Factors due to Wheel Flat
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Increasing dynamic impact forces with increasing speed.
Mass distribution known

 v=150 km/h

« k=60kN/mm
* Kk, =10 kN/mm
* k, =5 kN/mm

* m,=900 kg

* my,=1,300 kg
* m,=9,375 kg

* F,=113.6 kN

gy =1 + 2.sin

¢
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K’;, 4 that considers the effect of Hertzian contact
deformation on the dynamic impact due to a wheel flat

21y (E) = Use of this equation requires a Hertizan contact deformation analysis
;;3 y=1+ Z.Sing " "\h and an estimate for 2b.
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K’;, 4 that considers the effect of Hertzian contact
deformation on the dynamic impact due to a wheel flat

* THIS PART ESTIMATES DYMAMIC IMFACT FORCE FACTORS DUE TO

WHEEL FLATS 3.50 —B—KE3 -
WHEEL FLAT * EQUATIONS USED: Klag'KlagJH =0=B3H :
*Flease read the Welcome to ALLTRACK tab first and then proceed to Design threshold -
enter the input parameters in turquoise. 1]
o
- = 300
1 Track stiffness per wheel (k) (kNdmm) = 60.0 -4
F—
2 Primary wheel spring stifness (k,) (kNdmm) = 10.0 2 R o . e %
3 Secondary bogie spring stifness (ky) (kMinm) = 4.3 rr /B 7] A%, LY, ‘é
h 2 L]
4 Hertzian contact stifness (ky) (kMdmm) = 20,000 — N - R = 3
5 Total system stifness:1 (k) (kMimm) = 2.8 -3 250
o
6 Do you have the mass distribution (Type "yes™ or"no”) ? . yes Kgs = 1+ 2. sin® ; 21w Koo =142 sin® ";
. . 2 |a"g. rg B3H 2 2
7 Mass of axle with two wheels and break disks (kg) = 1,800 ™ =]
w
8 Mass of bogie (kg) = 5,200 . 'g
Eeant 2sley [y wesin® . .
g Mass of body (kg) = 45,000 f T oy : 1 4_‘_\_:_*; 1=72r. smqﬂ—9 h= |.!r|r|§ g' 2.00
10 Mumber of axles per bogie =| 2 u= ,(1 . cos:_“) y= z.arrsiﬂlE w=r(1 mi} h'=h-v 'g
L}
11 Mumber of bogies per body = 2 §
12 Static vertical wheel force on tangent (F.) (kN) = 76.8 A o, o z
13 Static track deflection (a) (mm) = 1.28 Py j g 1%
"2 r =
14 Static system deflection {(a') fmm) = 21.06 r ! , ‘B B E
iy 2 [
15 Wheel diameter (mm) = 1020 ) h P :
16 i - Lo Ye'D | L L |
Speed of train (v) (ki) = 100 a c i A Br &
(mfs) = 27.8 —on—1 SR L I O O A
0 10 20 30 40 50
17 Hertzian contact width at interface (2b) (mm) = 10 Length of wheel flat (1) (mm)
18 Length of wheel flat (1) (mm) = 5 10 15 20 25 30 35 40
19 Time to spin around A and hit rail at B, L., (s) = 0.00009 0.00018 0.00027 0.00036 0.00045 0.00054 0.00063 0.00072 Evaluation of bearing pressures between bearing elements for
20 Wheel flat chord angle (@) (rad) = 0.010 0020 0029 0039 0049 0059 0069 0078 ballasted track
21 Depth of wheel flat (u) ¢mm) = 0.006 0025 0055 0098 0153 0221 0300 0392 A (MM?) = 278 et ) = 40.0
22 Wheel flat step height (h) (mm) = 0.025 0.008 0221 0.392 0.613 0.882 1.201 1.569 A (MM = 3,000 Attt (M2 = 4,239,173
23 Herizian deformed step height (h') {mim) = 0.000 0.000 0.123 0.294 0515 0.784 1.103 1.471 2=
p height (") (mm) Aoz (M) = 3,000 Enter F; or Fiy (kN) = 196.4
24 h@'= 0001 0005 0010 0019 0029 0042 0057 0074 Woeterone e (MM} = 300
25 Wia'= 0000 0000 0006 0014 0024 0037 0052 0070 | oo (MM)= 900 Prailhesd (MPa)= 706.5
26 KB3: 1.24 1.48 1.72 1.96 2.20 2.44 2.68 2.92 Aspeiom (MM?) = 270,000 Prailbottom (MPa)= 65.47
27 KB3H: 1.00 1.00 1.54 1.83 2.10 2.36 2.61 2.86 Qg (MM = 300 Pstecpertop (MPa)= 65.47
28 Dynamic impact force exerted on frack: F; (kN) = 952  113.7 1321 150.6 169.0 1875 206.0 2244 it ) = 30 Psleeperbottom (MPa)= 0.73
29 Dynamic impact force exerted on track: Fi y (kN) = 76.8 76.8 118.0 140.7 161.3 1812 2006 219.7 Aot (MM2) = 805,692 Phallastbottom (MPa)= 0.24
30 Design threshold :  2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 Ot (MM) = 200.0 Psubballastbottom (MPa)= 0.05




K’;, 4 that considers the effect of Hertzian contact
deformation on the dynamic impact due to a wheel flat
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Our study that introduces the Bezgin - Kolukirnik Equations
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Where are we now? Current status of the work.
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Collaboration with Network Rail



Collaboration with Dr. Mohamed Wehbi, Senior Design Engineer
Track Bed Design & Investigation Team of Network Rail

= The nature of the collaboration is to investigate the use of the Bezgin Method for the analysis of rough track due to
variations in track stiffness and track profile.
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Extensive comparisons of estimates with numerical analysis
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Harmonic representation of raw data for use in the Bezgin
Method
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Application over case studies
and site specific data
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Collaboration with Railway Dynamics Team of SNCF Réseau

= The nature of the recently initiated collaboration is to investigate the use of the Bezgin Method for the analysis of
rough wheel profiles and track defect singularities.

= Comparison studies are underway that compare the highest force estimates of advanced numerical model analysis
for wheel flats and rail joints with the estimates of K'gs.
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Fig. : FE model of flexible track and its deformation



Conclusions

= All else being the same, the same wheel flat on two different wheel diameters will generate different
impacts which are inversely related to the wheel diameter.

= There is currently no consensus among agencies and railway authorities with regards to the limitation of
wheel flats operating on railways.

= The issue is complicated not only due to speed and weight of the service but also due to differences in
the weight distributions of the rolling stock.

= Nevertheless, the engineer must set a serviceable and a stable load path between the wheel and rail
contact and the subgrade.

= Accumulating damage on the railhead paves the way to variations in railway profile and stiffness,
resulting in an array of dynamic impact forces on the railway track.

= There must be a clear understanding between the owners of the railway track and those operating the
trains with regards to the allowable extent of wheel flats, which has the potential to damage both the
track and the wheel.

= Asingle limit on the flat does not satisfy all operational cases.



Conclusions

= The research continues with the application of the equations produced by the Bezgin Method to estimate
the peak dynamic impact forces due to track and wheel roughness.

= To this end, further comparisons with advanced numerical modelling and field data are needed.

= | look forward to establishing more collaborations and extending the breadth and depth of existing
collaborations to introduce the proposed method and the equations to wider audiences.

= | have a request for site data to correlate the estimated dynamic impact forces to observed track and
wheel damage.

= | request data from advanced numerical modelling of rail joints, wheel flats, turnout crossings to compare
with the estimates of the proposed equations.
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