ICRI Presentation April 22, 2021

Rail Integrity Research at TTCI

Ananyo Banerjee, Ph.D. Principal Investigator

ananyo_banerjee@aar.com

©2021 TTCI/AAR

Presentation Outline

- Why study rail integrity?
- TTCI's RailGrow model
- Fatigue testing of rails under simulated wheel loads
- Residual stress analysis
- Rail defect prediction using machine learning
- Concluding remarks

Rail with transverse defect after fracture

Why Study Rail Integrity?

Challenges

- Understanding how transverse defects (TDs) form and grow due to rail bending
- Understanding how residual and thermal stresses affect TD growth rates
- How different parameters influence probability of defect to form in a rail

Worn rail with transverse defect at gage corner

©2021 TTCI/AAR

Slide 3 of 15

Fracture Mechanics Model (RailGrow)

• TD growth predicted as a function of million gross tons (MGT) to fracture

- Rail modeled as a continuous beam on an elastic foundation
- Rail is subjected to:
 - Wheel loads (bending stresses)
 - Thermal stresses
 - Residual stresses

Combination of stresses experienced by a rail

The RailGrow Model

Simplified residual stress distribution modeled in RailGrow

• TD growth is affected by:

- Thermal stress (temperature deviation from neutral temperature)
- Residual stress (single value vs. distribution)
- Track modulus
- Wheel loads (vertical and lateral)
- Location and initial size of TD
- Rail size (Example: 136RE)
- Material properties of rail steels

TD Sensitivity

• TD growth is sensitive to:

- Location in rail head
- Residual stress distribution
- Combination of above factors

Testing of Rails Under Simulated Wheel Loads

Worn rails with detected TDs

- Simulated wheel loads applied with longitudinal stress

Testing of Rails under Simulated Wheel Loads

• TD growth rates are variable

- Same wheel loads and thermal stress applied for both tests

TD growth rate curves showing variable growth rates

©2021 TTCI/AAR

Slide 8 of 15

Testing of Rails under Simulated Wheel Loads

- Validating tests with RailGrow are influenced by:
 - Residual stress
 - Fatigue crack growth rate (FCGR) properties of rail steels

RailGrow predictions and rail test data comparison due to FCGR variation

©2021 TTCI/AAR

Slide 9 of 15

Residual Stress Analysis

- Older methods included strain gages
- Newer methods provide stress maps without gauges
 - Neutron diffraction, contour method

©2021 TTCI/AAR

Slide 10 of 15

Neutron/X-ray Diffraction vs. Contour Method

Contour Method

- Destructive method
- Measures strains in longitudinal axis only
- Provides stress map of entire cross-section

Neutron/X-ray Diffraction

- Non-destructive method
- Measures strains in all 3 axes
- Suitable for thin cross-sections or locations close to the surface

Precision metrology equipment measuring surface heights of rail cross section (© Hill Engineering LLC)

Rail placed for Neutron Diffraction (© Oak Ridge National Laboratory)

Slide 11 of 15

Rail Defect Prediction Model- Reasons for Development

• Probability of rail defect

- Is it high in specific subdivisions?
- How maintenance strategy needs to be changed?
- Which operational parameters need to be changed?

Hypothetical mock-up of risk screening on the network

Slide 12 of 15

Rail Defect Prediction Model- Steps

Probability depends on

- Defect history
- Track characteristics
- Operational information
- Maintenance activity
 - rail grinding
 - ballast cleaning

4-step procedure of model development

Four-step process in developing a rail defect statistical prediction model

Rail Defect Prediction Model- Inputs and Output

- Model Inputs can be changed to see trend of output value
- Output is a probability value between 0 and 1

Output of the model

Input	Input Range	Default Value
Rail age (years)	0-80	24
Segment length (miles)	0-10	0.25
Annual traffic density (MGT)	0-100	20
Annual number of car passes (in thousands)	0-700	250
Maximum allowed speed (mph)	0-60	35
Curve (degrees)	0-20	0 for tangent; 3 for curved track
Grade (percent)	0-4	0.4
Rail position	Tangent rail, high rail, low rail	Tangent rail
Rail size (lbs./yard)	0-155	132
Number of turnouts per mile	0-2	0.5
Rail quality index	New rail, re-laid rail	New rail
Number of ballast cleaning per year	0-2	0
Number of grinding passes per year	0-4	1
Number of prior defects (all types) per mile per year	0-10	0.3
Number of prior vehicle track interaction (VTI) exceptions per mile per year	0-15	0.5
Number of prior track geometry defects per mile per year	0-10	2

Inputs for the prediction model

Concluding Remarks

- RailGrow model uses fracture mechanics to predict TD growth rate as a function of tonnage
- TD growth is sensitive to location and residual stress distribution
- Testing rails with defects under simulated loads show variable TD growth rates
- Methods of analyzing residual stresses provide insight to TD growth rate variability; each method has its pros and cons
- Rail defect prediction model uses various parameters based on historical big data to give probability of defect formation

