22 APRIL 2021

## ICRI Presentation:

# Defect Growth Characterization in Modern Rails



#### **Pawel Woelke**

**Team:** Taylor, P., Taylor, J., Stoddart, E., Fajuyitan, K., Nied, H., Kizildemir, S., Jeong, D., Hutchinson, J.W., Fletcher, F., DuPont, J., Gnaupel-Herold, T.

FRA CoR: Robert Wilson

**Thornton Tomasetti** 

### PROJECT PARTNERS



Federal Railroad Administration



## **Thornton Tomasetti**











## INTRODUCTION



| Rail<br>Type | Designation                      | Manufacturer                               | Weight | Heat<br>Treatment                      | Wear          |
|--------------|----------------------------------|--------------------------------------------|--------|----------------------------------------|---------------|
| Modern       | AHH<br>Advanced Head<br>Hardened | ArcelorMittal                              | 136 RE | Head<br>hardened; fast<br>cooled       | New           |
| Modern       | HH<br>Head Hardened              | ArcelorMittal                              | 136 RE | Head hardened                          | New           |
| Modern       | SS<br>Standard rail              | ArcelorMittal                              | 136 RE | Control-cooled                         | New           |
| Legacy       | CF&I77                           | Colorado Fuel<br>& Iron, 1977              | 136 RE | Control-cooled                         | Never<br>used |
| Legacy       | HAY84                            | Hayange Steel<br>(currently Tata<br>Steel) | 136 RE | Vacuum heat<br>treated and<br>degassed | Never<br>used |





AM rails at ATLSS Labs Lehigh University

- Current inspection interval based on LEGACY rails: 40 MGT
- Modern rails pearlitic, head-hardened
- What is the effect of head-hardening on the rails steel properties?

**Thornton Tomasetti** 

## **BASIC PROPERTIES**



## MICROSTRUCTURAL OBSERVATIONS



LOM Sample 4 from **AHH** rail at the outer edge of sample





LOM Sample 4 from **HAY84** rail at the outer edge of sample



- Uniform pearlitic microstructure, except near the head surface
- Decarburization carbon depleted zones caused by high temperature processing – not a significant effect

## FRACTURE TOUGHNESS





CT specimens cut from horizontal slices in the rail head



| Depth in mm | AHH  | НН   | SS & HAY84 | CF&I77 |
|-------------|------|------|------------|--------|
| 6.5         | 40.0 | 37.1 | 36.1       | 44.3   |
| 19.5        | 34.7 | 36.0 | 32.8       | 37.0   |
| 32.0        | 38.8 | 42.1 | 36.2       | 42.6   |

- Relatively small toughness variation across all rails
- Variation within each rail head similar to variation across all rails

## **CRACK GROWTH RATE**



Legacy rails (Jeong et al.)

$$\frac{da}{dN} = C \frac{\Delta K^p}{(1-R)^q} \qquad \begin{array}{l} \boldsymbol{c} = \mathbf{10^{-11}} \\ \boldsymbol{p} = \mathbf{4} \\ \boldsymbol{q} = \mathbf{1.63} \end{array}$$

*AHH – current study* 

$$\frac{da}{dn} = C \frac{\left(\Delta K\right)^p}{K_c - \Delta K}$$

$$C = 3.69 \times 10^{-7}$$
,  $p = 2.52$ ,  $K_c = 29.4$ .



## **RESIDUAL STRESS**



Transverse residual stress component  $\sigma_{vv}$  in rails

## LONGITUDINAL RESIDUAL STRESS (AHH)



Specimens for residual stress measurement (a) planar, (b) half rail 300mm long



## **CRACK GROWTH ANALYSIS**



| Rail Steel    | Slow Crack Growth Life (MGT) |
|---------------|------------------------------|
| AHH           | 27.5                         |
| НН            | 28.5                         |
| SS/HAY        | 27.5                         |
| CF&I          | 27.4                         |
| Scutti et al. | 49.0                         |

All rails analyzed with the same residual stress





## PROBABILISTIC CRACK GROWTH ANALYSIS





## **DETAILED ANALYSIS OF THE SIF**



- Analytical model is conservative (as intended)
- Detailed simulation to assess the consequence of initial assumptions
- Improving the accuracy would produce longer life predictions

## **ROLLER STRAIGHTENING – WIP**









#### Dimensional

 $\overline{w}_1 = 5.626$  inches,  $\overline{h}_3 = 7.312$  inches Dimensionless geometry  $w_1 = 1$ ,  $w_2 = 0.139$ ,  $w_3 = 0.474$  $h_1 = 0.118$ ,  $h_2 = 0.751$ ,  $h_3 = 1$ These refer to the larger font symbols





## **ROLLER STRAIGHTENING – WIP**





#### Residual Stresses (Isotropic Hardening)



## RESIDUAL STRESS AND MODEL ACCURACY



### SUMMARY - WIP

- Head hardening does not significantly reduce fracture toughness of the rail steel
- Results suggest 30MGT inspection interval likely more appropriate than currently recommended 40MGT (for all rails!)
- Roller straightening is most significant driver of the residual stress: increasing steel strength increases residual stresses
- Theoretically, it is possible to get favourable stress distribution by adjusting the roller straightening process – WIP
- Reducing the level of conservatism in the analytical DF model could offset the effect of faster crack growth due to increased residual stresses – WIP

**Thornton Tomasetti**