Grinding-induced Rolling Contact Fatigue in Rails

Carsten Jørn Rasmussen

Consulting Rail Specialist

COWI

COWI

My experience

Carsten Jørn Rasmussen

- M.Sc., IWE, Consulting rail specialist at COWI
- Rail System Manager at the Danish infrastructure manager, Banedanmark for 12 years
- Rail welding and defect specialist at the testing company, FORCE Technology for 12 years
- Specialized in:
 - Rail monitoring and maintenance
 - Rail metallurgy and welding
 - > Rail strategies and regulations

Grinding-induced RCF in Rails

Presentation:

- > Introduction
- > RCF cracks in R350HT
- > Influence of the grinding process
- > Findings over 10 years

Europe

Rail network in Denmark

3500 km track

Rail network in Denmark

Banedanmark:

- > 3500 km track
- > 30 % curves
- > Flat country no mountains
- > Max. 22,5 tons of axle load
- Standard rail profile: 60E2
- Standard rail grade: R260
- Standard inclination: 1:40

Grinding of rails

- > Speed: 5-7 km/h
- > Around 0,15 mm removal per passage
- > To reprofile and to remove/prevent RCF defects and corrugation.

RCF in R350HT rails

Case 1) Odense-Middelfart

- > Cracks found in 2010 after 72 MGT
- Curves with R350HT rails
- Mixed traffic passenger/freight
- > 12 MGT per year

RCF in R350HT rails

Case 2) Single track

- > Cracks in 2011 after only 20 MGT
- > Curves with R350HT rails
- > Lint41 light passenger train
- > 2 MGT per year

RCF in R350HT rails

Case 2) Single track

Spallation

Noticed conditions in the cases:

- Curves with R350HT
- Mainly high rail
- > Initial grinded
- > Different mix of traffic
- Different tracks
- > After low total traffic loads (20-80 MGT)
- > Also on straight tracks

Longitudinal cut in R350HT rail

Periodic cracks of 25-30 mm!

Transition weld between R350HT and R260

Why RCF cracks in R350HT?

Why RCF cracks?

- Cracks initiates in transition zones between pearlite and martensite.
- Must be found and cut out in a very early stage.

Martensite at the surface

Transverse cut through a crack

Why RCF cracks?

Martensitic structure

Why martensite (WEL)?

When rail temperature gets over 720 °C followed by rapid cooling.

- > Wheel/rail slip?
- > Other reasons?

By coincidence in 2011 martensite (WEL) was detected outside wheel/rail contact band in a grinded area.

Grinded rail surface

- Grinding stones are flat leading to facets on the rail surface after grinding
- Sometimes periodic deeper grinding marks
- > The friction from grinding stones introduces heat into the surface of the rails.

Grinding train

Grinding stone

Grinded rail seen from above

Facets and deeper marks from flat grinding stones

Grinded rail surface seen from above

Periodic cracks

- Cracks with periodicity of approx. 25-35 mm.
- Similar distance as deeper grinding marks!

Similar periodic cracks in other countries

Initiation of RCF cracks in deeper grinding marks?

Conventional grinding of the rails in the test.

Samples cut out just after grinding

R260

Longitudinal cut in R350HT

Martensite in both R350HT and R260 from the grinding process!

R350HT rail cut out from track in service

Grinded in 2010 Extracted in 2012 Total traffic: 5 MGT

R350HT rail cut out from track in service

R350HT rail cut out from track in service

Cracks initiated at transition between martensite and pearlite in grinding marks

X-ray tomography of cracks in R350HT

3d representation of a martensite crack in R350HT

Facets from flat grinding stones

High stresses at facets just after grinding

Main factors for RCF cracks in R350HT

- Cracks initiates along the grinding induced hard and embrittle martensite and propagates down in the rail.
- R350HT is wear resistance -> grinded profile with facets and concentrated stresses stays for longer time.
- Shear stresses on high rail in curves

What about softer rails? Why not similar type of cracks?

Sample of R200 rail from service

> Grinded in 2013 - extracted in 2016

> Total traffic: 2.7 MGT - No RCF!

Periodic bands - similar intervals as grinding marks

Martensite with cracks in R200

- > The martensite (\approx 1000 Hv) from grinding seems to be pressed down in the 5 time softer perlitic R200 resulting in plastic deformation under the martensite.
- > Cracks turn up with spallation to be expected.

Martensite with cracks in R200

Cracks turns up - spallation to be expected

X-ray tomography of cracks in grinding mark in R200

Not RCF in R200 – why?

- Softer R200 -> Facets are worn away faster
- The martensite (≈ 1000 Hv) from grinding is pressed down in the 5 time softer perlitic R200 -> plastic deformation under the martensite.
- Initiated cracks propagates around along the zone with martensite up to the surface with spallation of the martensite -> no RCF.

What about R260?

Grinding induced RCF in Rails

Final remarks

- > This presentation shows that grinding marks in R350HT rails can lead to RCF cracks.
- > An hypothesis why its not a big problem in softer rail steel like R200 is given.
- > RCF cracks are influenced by a lot of different factors in very complex combinations.

Grinding-induced Rolling Contact Fatigue in Rails

Thank you for your attention!

Carsten Jörn Rasmussen

Consulting rail specialist

COWI A/S
Parallelvej 2
2800 Kongens Lyngby
Denmark

Phone: +45 56 40 00 00 Mobile: +45 26 12 33 15

Email: cjra@cowi.com
Website: www.cowi.dk

