

UNIVERSITY OF TWENTE.

Solid mechanics and AI hybrid approach to mitigation of railway track buckling

IWO SŁODCZYK¹, DAVID FLETCHER¹, INNA GITMAN², BRIAN WHITNEY³

¹UNIVERSITY OF SHEFFIELD, ²UNIVERSITY OF TWENTE, ³NETWORK RAIL

Overview

- 1. Buckling of track
- 2. Introduction to fuzzy logic
- 3. Benefit of using a fuzzy logic model for track buckling prediction
- 4. Fuzzy logic inference method for predicting buckling temperatures
- 5. Results

Buckling of Track

Can gradually develop in weak track Buckles pose danger of derailment Explosive buckles can occur, ahead of or under a Caused by a build-up of expansion stress in the rail moving train Adjoining region- stress Region far from buckled zone -Adjoining region- stress Buckled region decreasing with proximity decreasing with proximity to uniform high stress uniform lower buckled region to buckled region stress

Buckling of Track

- Complex mechanism of many variables
- •T_{min} and T_{max} characterise the buckling behaviour for a section of track
- Track properties have a significant effect on buckling temperatures
- Conventional models rely on knowledge of engineering variables and are computationally expensive to apply

Fuzzy Logic

Fuzzy Logic Models

- Fuzzy sets provide descriptions of vagueness through membership values
- Sets are connected through rules
- Both sets and rules can be inferred from datasets
- Can model complex mechanisms, are lightweight and don't need lots of data
- Can compute using linguistic variables vague and uncertain inputs

Fuzzy Logic for Buckling Prediction

- Track properties usually determined through testing and uncertain for majority of real-world track
- •A fuzzy set provides a computational understanding of the vagueness and can be utilised by the fuzzy model
- Multiple fuzzy sets interact following strict rules grounded in physics
- Already recorded or accessible information made useful

Numerical value of minimum buckling temperature

Proposed Application of Methodology

- ■The aim:
 - Developing a fuzzy logic model for risk of buckling prediction
- Fuzzy model trained and optimised, tested
- Buckling temperatures calculated using input track properties
- Application for a network of rail, forming a map of buckling risk

Inference and Prediction Methodology

- Training data is supplied to the model
- Training data is fuzzified
- Relational matrix is constructed from the fuzzy training data

- New input data is fuzzified
- Fuzzy output is calculated from composition of fuzzy input and relational matrix
- Fuzzy output is defuzzified to give a single numerical value

Results

- Lateral resistance, longitudinal resistance and fastener torsional stiffness used to predict minimum buckling temperature increase
- Training data supplied by analytical model, tested for 100 buckling scenarios
- Results improved, giving 2.3% error
- Proved to be rapid in calculation and required a training data size of just 27 points

Test Values of Safe Temperature Increase ΔT (° C)

Conclusions

- •High accuracy, low calculation time without reliance on large training datasets makes for a good alternative to conventional models
- •Method is not confined to a single dataset, buckling scenario or even the field of track buckling
- •Well suited to predicting large volumes of data with a mix of numerical and linguistic variables

Future Directions

- Further implementation and testing of qualitative inputs
- Lateral resistance testing to establish representative values
 - Single sleeper push tests in a ballast box
 - Steel, concrete and wooden sleepers investigated in both compacted and loose ballast

Contacts & Acknowledgments

- Brian Whitney, Network Rail, <u>brian.whitney@networkrail.co.uk</u>
- Prof. David Fletcher, University of Sheffield, <u>d.i.fletcher@sheffield.ac.uk</u>
- Prof. Inna Gitman, University of Twente, <u>i.m.gitman@utwente.nl</u>
- Jacob Whittle, University of Sheffield, jwwhittle1@sheffield.ac.uk
- Iwo Słodczyk, University of Sheffield, <u>islodczyk1@sheffield.ac.uk</u>