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5. Results
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Buckling of Track

Buckles pose danger of derailment

Caused by a build-up of expansion stress in the rail
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Buckling of Track

Complex mechanism of many variables

Tmin and Tmax characterise the buckling behaviour for 

a section of track

Track properties have a significant effect on buckling 

temperatures

Conventional models rely on knowledge of 

engineering variables and are computationally 

expensive to apply
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Fuzzy Logic
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Fuzzy Logic Models

Fuzzy sets provide descriptions of 

vagueness through membership values

Sets are connected through rules

Both sets and rules can be inferred from 

datasets

Can model complex mechanisms, are 

lightweight and don’t need lots of data

Can compute using linguistic variables –

vague and uncertain inputs
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Fuzzy Logic for Buckling Prediction

Track properties usually determined 
through testing and uncertain for 
majority of real-world track

A fuzzy set provides a computational 
understanding of the vagueness and can 
be utilised by the fuzzy model

Multiple fuzzy sets interact following 
strict rules grounded in physics

Already recorded or accessible 
information made useful
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“Ballast looks pretty good”      &     “Clips and pads quite worn”

&

Numerical value of minimum buckling temperature



Proposed Application of Methodology

The aim:

 Developing a fuzzy logic model for 
risk of buckling prediction

Fuzzy model trained and 

optimised, tested 

Buckling temperatures calculated 

using input track properties

Application for a network of rail, 

forming a map of buckling risk 
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Training data is supplied to the 
model

Training data is fuzzified
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from the fuzzy training data

New input data is fuzzified

Fuzzy output is calculated from 

composition of fuzzy input and 

relational matrix

Fuzzy output is defuzzified to give 

a single numerical value

Inference and Prediction Methodology



Results

Lateral resistance, longitudinal resistance 

and fastener torsional stiffness used to 

predict minimum buckling temperature 

increase

Training data supplied by analytical model, 

tested for 100 buckling scenarios

Results improved, giving 2.3% error

Proved to be rapid in calculation and 

required a training data size of just 27 points
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Test Values of Safe Temperature Increase ∆T (˚ C)
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Conclusions

High accuracy, low calculation time without reliance on large training datasets makes for a good 

alternative to conventional models

Method is not confined to a single dataset, buckling scenario or even the field of track buckling

Well suited to predicting large volumes of data with a mix of numerical and linguistic variables
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Future Directions

Further implementation and 

testing of qualitative inputs

Lateral resistance testing to 

establish representative values

 Single sleeper push tests in a 
ballast box

 Steel, concrete and wooden 
sleepers investigated in both 
compacted and loose ballast

12



Contacts & Acknowledgments

Brian Whitney, Network Rail, brian.whitney@networkrail.co.uk

Prof. David Fletcher, University of Sheffield, d.i.fletcher@sheffield.ac.uk

Prof. Inna Gitman, University of Twente, i.m.gitman@utwente.nl

Jacob Whittle, University of Sheffield, jwwhittle1@sheffield.ac.uk

Iwo Słodczyk, University of Sheffield, islodczyk1@sheffield.ac.uk

13

mailto:brian.whitney@networkrail.co.uk
mailto:d.i.fletcher@sheffield.ac.uk
mailto:i.m.gitman@utwente.nl
mailto:jwwhittle1@sheffield.ac.uk
mailto:islodczyk1@sheffield.ac.uk

