

In-situ Optical Monitoring of Very Early-Stage Rail Wear and Rolling Contact Fatigue Crack Initiation in Laboratory Testing

Adam Wilby¹, David Fletcher¹, Roger Lewis¹, Jacob Corteen²

¹ The University of Sheffield, Sheffield, United Kingdom ² British Steel, Scunthorpe, United Kingdom

EngD Project Funded by British Steel and the Engineering and Physical Sciences Research Council via the Advanced Metallic Systems CDT

Background Research Problem

- Wear and RCF cracks remain significant damage mechanism affecting Rail Steels
- Performance against Wear and RCF damage are crucial factors in the rail steel selection process
- Twin-disc tests commonly used to quantify rail steel wear and RCF performance
- Limited Information about wear and RCF performance obtained during tests

Background

Previous Approaches to Enhance Data Collection

- Previous Approaches to enhance data collection
 - Mass loss measurements
 - > Eddy current sensors
 - Electro-magnetic arrays
 - Optical systems
- Research Aim: Design and develop a new optical monitoring system capable of photographing in detail a twin-disc samples running surface while rotating at speeds up to 400 rpm during twin-disc tests

Design of the New In-Situ Optical Monitoring System Design Overview

- Optical monitoring system designed as two removable modules
- Connected via an intermediate slider and bolted onto twin-disc machine rail rolling driveshaft
 - Allows the entire system to move with the machine helping create stable images

Design of the New In-Situ Optical Monitoring System Line Scan Camera Module

- Images captured using a Basler spl4096-kc line scan camera with a Nikon AL-S 105mm f/2.8 macro lens
 - Spatial Resolution = 20μm/px
- Required capture Line rate = 20µs
 - Exposure time = 19μs
- Designed depth of field = 1mm
 - \triangleright Aperture = f/5.6
- Camera vertical height can be adjusted to aid in focusing the images
- Images transferred to a dedicated computer and processed using XCAP image processing software

Design of the New In-Situ Optical Monitoring System Line Light Driver Module

- Twin-disc illumination provided by a Chromasens Corona II LED line light
 - ➤ Light output up 500,000 lux of illumination at the 95mm working distance
- LED line light controlled by a Chromasens XLC4 control unit, which is programmed using Chromasens XLC4 commander software
- Can be adapted to allow tests to be conducted with either brightfield and darkfield illumination

Trial Test Programme

- Study 1 Assess how the optical monitoring system was able to visualise wear flakes and RCF cracks
 - > Twin-disc samples tested:
 - R260 wear twin-disc sample previously test against R8T wheel steel (1200MPa, 1% slip, dry) up to 80,000 contact cycles
 - Calibration disc with a spark eroded RCF crack
 - Unworn twin-disc sample
- Study 2 Assess the performance of the system during a test when the disc are in contact
 - ➤ R260 rail steel against R8T wheel steel for 1200MPa, 1% slip, dry contact conditions up to 40,000 contact cycles
 - ➤ Image captured every 30 secs

Wear Twin-Disc Sample

RCF Calibration Disc

Trial Test Results

Rails Steel Surface Damage Observation Assessment

- Wear Twin-Disc Sample
 - > Brightfield illumination Outline of wear flakes easily identified by the shadow cast onto the sample
 - ➤ **Darkfield illumination** Difficult to distinguish bright spots created by wear flakes and the sample surface roughness

Disc (Darkfield)

10 mm

Trial Test Results

Rails Steel Surface Damage Observation Assessment

- RCF calibration twin-disc sample
 - Brightfield illumination Outline of crack easily identified by the shadow cast onto the sample
 - ➤ **Darkfield illumination** Very contrast between the crack and twin-disc samples running surface to able to easily identify it

10 mm

Trial Test Results Dry contact test

- Images obtained barely affected by the movement of the machine
- Capable of visualising the surface development of twin-disc samples
 - ➤ Initial darkening stage followed by gradual development of easily recognisable wear flakes

Conclusions

- The new optical monitoring showed that it is capable of optically monitoring the running surface of 47mm twin-disc sample rotating at 400 rpm
- Brightfield illumination showed to be best at visualising the wear flakes, RCF cracks, and tarnishing of the disc surfaces
- Darkfield illumination was better for imaging surface roughness development on a twin-disc sample
- The system is able to capture detailed stable images of the twin-disc samples running surface when subject to movement created by the machine when the discs are in contact

