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Literature

• Typically, conditions in few selected curves are investigated

• Previous observations:

– The influence of vehicle speed is moderate [1]

– Curve squeal occurrence increases with increasing relative humidity [2]

– Curve squeal occurrence increases after rail grinding [1]
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Green line at Stockholm metro

• Track length of 41 km with three different routes 

south of station Slussen

• 49 stations of which the majority are located 

outside of tunnels

• Traffic that mostly consists of model C20 

manufactured by Bombardier transportation



On-board monitoring system

• Noise is continuously measured at both wheels of the trailing wheelset of the 
leading bogie, or leading wheelset of the trailing bogie, depending on 
travelling direction
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Microphone 

• Position and speed is collected with GPS

• Curve squeal is evaluated in time-intervals of 
250 ms using the following criteria:
– Vehicle located in a curve

– SPL exceeds 95 dB

– SPL in the frequency range above 1.6 kHz at the 
inner wheel exceeds that of outer wheel by at 
least 3 dB



Data

• Data collected from two vehicles that have trafficked 
on the Green line between January 2019 –
November 2021

• In total 143 curves and 379 776 vehicle passages

• All curves with radius below 900 m and circular 
sections of over 50 m length are included

• A squealing passage requires at least 0.5 s of 
continuous squeal (two consecutive positive 
samples)

• Air temperature and relative humidity are collected 
from the weather station located at Bromma airport 
in Stockholm
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Binary logistic regression analysis

• The regression model below is fitted to each curve individually
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• Vehicle speed was investigated by introducing several additional variables 
associated with constant speed (linear and quadratic terms), acceleration and 
retardation. No significant effect on squeal probability was found 

𝑙𝑜𝑔𝑖𝑡 𝑠 = 𝑙𝑛
𝑠

1−𝑠
= 𝜃0 + 𝜃1𝑥1 + 𝜃2𝑥2 + 𝜃3𝑥3 + 𝜃4𝑥4 + 𝜃5𝑥1𝑥3 + 𝜃6𝑥3𝑥4

where 𝜃𝑛 are regression coefficients, 𝑠 is the probability for curve squeal and
explanatory variables are:
𝑥1 − vehicle individual
𝑥2 − rail grinding
𝑥3 − air temperature
𝑥4 − air relative humidity

Intercept



Influence of curve radius

• Squeal probability increases for decreasing 
curve radius (p<0.001)

• Impact of curve radius particularly 
accentuated for radii below approximately 
600 m

• Similar results obtained for curves located 
in- and outside of tunnels

• Large differences between individual 
curves of similar radius
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Influence of curve radius
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• Vehicle 2 is significantly less inclined to generate curve squeal than vehicle 1 
(p<0.001)
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Influence of rail grinding

• Squeal probability increases after rail 
grinding. Significance at level p=0.017

• The effect of rail grinding gets more 
pronounced for increasing curve radius
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Influence of environmental conditions

• Estimated regression coefficients for air 
temperature, relative humidity and their 
interaction are all significant at p<0.001

• The average response surface, logit(s), of 
curve squeal is shown to the right

• Complex relation between curve squeal 
probability and temperature/relative 
humidity
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Are there squeal-free track sections?

• Observation from 213 m radius curve between Gamla stan and T-centralen
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Vehicle 1 Vehicle 2



Conclusions

• Squeal probability has been investigated based on data collected by on-board noise 
monitoring during approximately 1.5 years of trains in regular traffic

• For curve radii below approximately 600 m, squeal probability shows an inverse 
proportionality with respect to curve radius

• Two studied vehicles show significantly different tendency to generate curve squeal

• Squeal probability increases after rail grinding

• At air temperatures above 10°C, squeal probability increases with increasing 
relative humidity. For air temperatures below 10°C, the opposite relation is found 

• No significant relation between squeal probability and vehicle speed is found

• Indications on the existence of squeal-free track sections
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Thanks for your attention!
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