Optimising components in the rail support system for dynamic vibration absorption and pass-by noise reduction

Jannik Theyssen, Astrid Pieringer, and Wolfgang Kropp

2023-02-21 ICRI workshop on Noise and Vibration

Applied Acoustics / CHARMEC Chalmers University of Technology Gothenburg, Sweden

- Rail pad stiffness is main lever for reducing noise from the rail
- Slab tracks typically have low rail pad stiffness
- Increasing rail pad stiffness increases load on supporting structure and ground-borne vibrations
- Conflict of interest: air-borne noise vs. ground-borne vibrations

• Two-stage elastic support acts like a dynamic filter

Two-stage elastic support acts like a dynamic filter

Two-stage elastic support acts like a dynamic filter

Vertical stiffness above the mass k_a (kN/m	m) 25, 50, 100, 200, 400, 800
Weight of the mass m (kg)	8, 16, 32, 64, 128
Vertical stiffness below the mass k_b (kN/m	m) 20, 40

Rolling contact force, support forces, radiated sound?

$$u_{r,i} = \alpha_{r,ie}F_e - \sum_{l=1}^{N} \alpha_{r,il}F_{a,l}$$

$$u_{f,i} = \sum_{l=1}^{N} \alpha_{f,il}F_{b,l}$$

$$u_{s,i} - u_{s,i} = \alpha_{a,i}F_{a,i}$$

$$u_{s,i} - u_{f,i} = \alpha_{b,i}F_{b,i}$$

$$u_{s,i} = \frac{F_{a,i} - F_{b,i}}{-\omega^2 m}$$

$$\alpha_{s,i} = \frac{1}{-\omega^2 m_i}$$

$$\begin{bmatrix} \alpha_r + \alpha_a + \alpha_s & -\alpha_s \\ -\alpha_s & \alpha_f + \alpha_b + \alpha_s \end{bmatrix} \begin{bmatrix} \mathbf{F_a} \\ \mathbf{F_b} \end{bmatrix} = \begin{bmatrix} \alpha_{r,e}F_e \\ \mathbf{0} \end{bmatrix}$$

- infinitely long rail and slab / support
- finite number of discrete rail seats
- individual stiffnesses and mass at each rail seat

• Calculate rail, sleeper and slab surface vibration

Radiation model

Wavenumber domain BE (2.5D BE)

 Roughness from measured wheel and rail

- Time-domain calculation of
 - Contact forces F_c
 - Forces F_a and F_b
 - Sound power

Radiated sound power

Radiated sound power

 Each track is represented by one data point

- Increasing k_a
- decreases L_w
- increases forces

- Decreasing k_b
 - decreases the forces
 F_c, F_a, and F_b
 - small impact on L_w

- Varying m
- Effect depends on excitation and track resonance frequencies

- Trade-off between F_c/F_a and L_W
- Decreasing k_b and increasing k_a has potential for track noise mitigation while not changing F_b

- Trade-off between F_c/F_a and L_W
- Decreasing k_b and increasing k_a has potential for track noise mitigation while not changing F_b

Conclusion

- Developed model for two-stage elastic support on slab track
- Time-domain calculation of rolling contact forces, track load, and sound field

major effect on sound power

affect rolling contact forces and track loads

minor effect on sound power

- Potential noise reduction without changing peak force on slab
- Effect on sound radiation from the wheel?

Acknowledgements

The current study is part of the ongoing activities in CHARMEC – Chalmers Railway Mechanics (charmec.chalmers.se).

Parts of the study have been funded from the European Union's Horizon 2020 research and innovation programme in the In2Track3 project under grant agreements No 101012456.

