Curve squeal modelling including transient effects and realistic curving scenarios

A. Pieringer¹, P.T. Torstensson², J. Theyssen¹, W. Kropp¹

¹ Chalmers University of Technology, Applied Acoustics/CHARMEC, Sweden

² Swedish National Road and Transport Research Institute (VTI), Sweden

Railway curve squeal

- Highly disturbing tonal sound in tight curves
- Self-excited vibrations of the railway wheel during 'imperfect curving'
- Threshold problem (lateral creepage, friction coefficient, contact position)

Transient effects

- Both lateral creepage and contact position vary during curving (vehicle dynamics, rail profiles)
- Local friction conditions vary along the curve
- Squeal needs some time to build up
- Discrete defects on the rail might influence squeal buildup
 - Include transient effects in modelling

Agenda

- Model description and extension
- Model demonstration and application
 - Systematic variation of contact parameters
 - Realistic curving scenario

Curve squeal model WERAN

High-frequency wheel/rail interaction in the time domain

Curve squeal model WERAN

Model characteristics

- Representation of wheel and track dynamics by pre-calculated impulse response functions (Green's functions)
- Convolution of the Green's functions with the contact forces to obtain wheel and rail displacements
- Coupling between vertical and lateral wheel/rail dynamics included; longitudinal dynamics neglected
- Non-linear, transient rolling contact
- Wheel rotation and discrete rail supports can be included, but are neglected here

Model extension

Inclusion of the lateral motion of the contact point

Modification of the Green's functions (example rail):

$$\begin{cases} x(t) = vt & \text{position of contact point} \\ \xi_j^{\mathrm{R}}\left(x(t)\right) = \int_0^t \sum_{i=2}^3 F_i\left(x(\tau)\right) \cdot g_{ij}^{\mathrm{R}}\left(x(\tau), x(t)\right) \, \mathrm{d}\tau \,, \quad j=2,3 \,. \end{cases}$$

rail displacement

contact force Green's function

$$\begin{cases} \mathbf{x}^{\mathrm{R}}(t) = \left[x(t), y^{\mathrm{R}}(t)\right]^{\mathrm{T}} = \left[vt, y^{\mathrm{R}}(t)\right]^{\mathrm{T}}. \\ \xi_{j}^{\mathrm{R}}\left(\mathbf{x}^{\mathrm{R}}(t)\right) = \int_{0}^{t} \sum_{i=2}^{3} F_{i}\left(\mathbf{x}^{\mathrm{R}}(\tau)\right) \cdot g_{ij}^{\mathrm{R}}\left(\mathbf{x}^{\mathrm{R}}(\tau), \mathbf{x}^{\mathrm{R}}(t)\right) d\tau, \quad j = 2, 3. \end{cases}$$

Model extension

Inclusion of the lateral motion of the contact point

Modification of the Green's functions (example rail):

$$\begin{cases} x(t) = vt & \text{position of contact point} \\ \xi_j^{\mathrm{R}}\left(x(t)\right) = \int_0^t \sum_{i=2}^3 F_i\left(x(\tau)\right) \cdot g_{ij}^{\mathrm{R}}\left(x(\tau), x(t)\right) \, \mathrm{d}\tau \,, \quad j=2,3 \,. \end{cases}$$

rail displacement

contact force Green's function

$$\begin{cases} \mathbf{x}^{\mathrm{R}}(t) = \left[x(t), y^{\mathrm{R}}(t)\right]^{\mathrm{T}} = \left[vt, y^{\mathrm{R}}(t)\right]^{\mathrm{T}} . \\ \xi_{j}^{\mathrm{R}}\left(\mathbf{x}^{\mathrm{R}}(t)\right) = \int_{0}^{t} \sum_{i=2}^{3} F_{i}\left(\mathbf{x}^{\mathrm{R}}(\tau)\right) \cdot g_{ij}^{\mathrm{R}}\left(\mathbf{x}^{\mathrm{R}}(\tau), \mathbf{x}^{\mathrm{R}}(t)\right) d\tau , \quad j = 2, 3 . \end{cases}$$

Model extension

Combination with a model for low-frequency vehicle/track

interaction

Sinusoidal path of the wheelset on the rail

- Pure lateral creepage 1%
- Constant friction coefficient 0.3
- Train speed 30 km/h
- Nominal wheel and rail profiles \$1002/BV50

Sinusoidal path of the wheelset on the rail

Sinusoidal path of the wheelset on the rail

Systematic variation of contact parameters Sinusoidal path of the wheelset on the rail

Sinusoidal variation of the friction coefficient

- Pure lateral creepage 1%
- Relative wheel/rail displacement -15 mm
- Train speed 30 km/h
- Nominal wheel and rail profiles \$1002/BV50

Sinusoidal variation of the friction coefficient

Sinusoidal variation of the friction coefficient

Sinusoidal variation of the friction coefficient

Realistic curving scenario

- 120 m radius curve on Stockholm metro
- Transition curve (0-50 m) + circular curve
- Precalculation of contact position and lateral creepage with SIMPACK
- Focus on leading inner wheel
- Constant rail profile, constant friction

Realistic curving scenario

Contact on wheel (—) and rail (- - -)

Result from SIMPACK

Lateral creepage 0 ×10⁻³ Lateral creepage

40

0

60

CHALMERS

Gauge in mm

1435 1440

1445

Realistic curving scenario

Result from WERAN

- Similar results in all 6 cases
- Slightly different squeal amplitudes

Conclusions

- A detailed time-domain model for curve squeal has been extended to allow for transient curving.
- Time-varying contact parameters such as contact position, lateral creepage, and friction coefficient can lead to on- and offset of squeal.
- The history of the wheel/rail dynamics can also have an influence on the occurrence of squeal and the selection of the squeal frequency.

Acknowledgements

Funding from

- the EU's Horizon 2020 research and innovation programme in the In2Track3 project (grant agreement no 101012456)
- the Swedish Transport Administration in the project "Curve squeal

 Influence of track design and maintenance status" (TRV

 2020/49829)

is greatly acknowledged.

