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Railway curve squeal

* Highly disturbing tonal sound in tight
curves

* Self-excited vibrations of the railway
wheel during ‘imperfect curving’

* Threshold problem (lateral creepage,
friction coefficient, contact position)
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Transient effects

* Both lateral creepage and contact position vary during
curving (vehicle dynamics, rail profiles)

* Local friction conditions vary along the curve
e Squeal needs some time to build up

* Discrete defects on the rail might influence squeal build-
up
=== |nclude transient effects in modelling

g In2Track3 CHALMERS



Agenda

* Model description and extension

* Model demonstration and application

 Systematic variation of contact parameters
 Realistic curving scenario
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Curve squeal model WERAN

High-frequency wheel/rail interaction in the time domain

Flexible wheel
model (FE) ——

Waveguide finite
element model of
the track [Theyssen,
2021]

Variational method by -

Kalker [Kalker, 1990]
constant friction
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Curve squeal model WERAN

Model characteristics

* Representation of wheel and track dynamics by pre-calculated
impulse response functions (Green’s functions)

e Convolution of the Green’s functions with the contact forces to obtain
wheel and rail displacements

* Coupling between vertical and lateral wheel/rail dynamics included;
longitudinal dynamics neglected

* Non-linear, transient rolling contact

 Wheel rotation and discrete rail supports can be included, but
are neglected here
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Vodel extension

Inclusion of the lateral motion of the contact point
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Modification of the Green’s functions (example rail):



Vodel extension

Inclusion of the lateral motion of the contact point

Modification of the Green’s functions (example rail):
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Model extension

Combination with a model for low-frequency vehicle/track
Interaction

wheel and track properties,
wheel and rail profiles,
friction coefficient, ...

vehicle

contact positions,
configuration,

heel and rail creepages contact forces,
wheelandrall _p, wheel and rail
profiles, .

isplacements

track geometry,
friction .
C(;c;flficient LOW_frequenCy ngh-frequency
train speed vehicle/track wheel/rail interaction

interaction

M n2Tracks CHALMERS



Systematic variation of contact parameters

Sinusoidal path of the wheelset on the rail

Pure lateral creepage 1%

Constant friction
coefficient 0.3

Train speed 30 km/h

Nominal wheel and rail
profiles S1002/BV50
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Systematic variation of contact parameters

Sinusoidal path of the wheelset on the rail
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Systematic variation of contact parameters

Sinusoidal path of the wheelset on the rail
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Systematic variation of contact parameters

Sinusoidal path of the wheelset on the rail
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Systematic variation of contact parameters

Sinusoidal variation of the friction coefficient

* Pure lateral creepage 1% 20

* Relative wheel/rail
displacement -15 mm

* Train speed 30 km/h

e Nominal wheel and rail 20+
profiles S1002/BV50

Z, mm
o
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Systematic variation of contact parameters

Sinusoidal variation of the friction coefficient
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Systematic variation of contact parameters

Sinusoidal variation of the friction coefficient
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Systematic variation of contact parameters

Sinusoidal variation of the friction coefficient
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Realistic curving scenario

e 120 m radius curve on Stockholm
metro

* Transition curve (0-50 m) + circular
curve

* Precalculation of contact position
and lateral creepage with SIMPACK

* Focus on leading inner wheel

e Constant rail profile, constant
friction
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Realistic curving scenario

Result from SIMPACK Gauge in mm
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Realistic curving scenario
Result from WERAN

e Similar results in all 6 cases

* Slightly different squeal amplitudes

Transition curve

Circular curve
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Conclusions

* A detailed time-domain model for curve squeal has been extended
to allow for transient curving.

e Time-varying contact parameters such as contact position, lateral
creepage, and friction coefficient can lead to on- and offset of
squeal.

* The history of the wheel/rail dynamics can also have an influence

on the occurrence of squeal and the selection of the squeal
frequency.
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