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Railway in-train forces

 Physical draft and buff forces

 Train operations and topographical conditions

 Getting larger and more complicated

In-train force related research
 Component integrity evaluation
 Wagon stability assessment
 Control strategy design
 Service quality improvement
 Train energy management

Introduction

Failure of a railway coupler (Cookson & Mutton, 2014)

(Xu et al., 2012)

𝐹 𝑡
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Current measurement/prediction methods

 Field measurement
Most reliable 
Enormous time and manpower
Risk of sensing device damage

Introduction

Field measurement (Ge et al., 2021)
Multibody dynamics simulation (Ren et al., 2022)

 Multibody dynamics (MBD) simulation
Relatively cost-effective
High level of domain knowledge required
Complex numerical model
Large computational and storage spaces

Both methods can only be conducted for a specific service condition one at a time
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Automatic train operation (ATO) system

 Improve train’s operations based on real-time 
measured data

 Structure:
– Railway traffic management module
– Train operation control module

 Onboard real-time measurements:
– Train dynamic responses 
– Driving behaviours
– Topographical information

 Do not integrate the function of real-time in-train 
force measurement/prediction

Introduction

ATO train operation control module (Yin et al., 2017)

Real-time data 
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Machine learning in engineering

 Teaching computers to learn from data and 

make decisions

 Solves complex problems that traditional 

programming cannot

Requires a large amount of high-quality data, 

lacks interpretability

Introduction

Data – results  relationship (program) sometimes hard to be defined
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Literature Review -- Machine  learning
Title Author, 

Year Research Method Key Finding

A data-driven dynamics simulation 
framework for railway vehicles

Nie et al.,
2018 Train crashworthiness

Multibody dynamics;
Finite element method;
Decision tree model

The time spent in co-simulation is less than MBD 
simulations with higher accuracy.

Artificial neural networks applied to the 
measurement of lateral wheel-rail contact 

force: A comparison with a harmonic 
cancellation method

Urda et al., 
2020

Wheel lateral
force prediction

Harmonic cancellation method
Multibody dynamics;
Neural networks 

ANNs are reliable alternatives for both the 
harmonic cancellation method and MBD, but 
ANNs have a shorter predicting time.

MBSNet: A deep learning model for 
multibody dynamics simulation and its 
application to a vehicle-track system

Ye et al., 
2021

System dynamic 
responses prediction

Vehicle-track system dynamics;
CNN-LSTM neural network

The deep learning model has high robustness in 
different inputs and can quickly achieve long-term 
predicted dynamic responses.

Machine learning based methods have a high accuracy with shorter prediction time
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Literature Review -- Digital twin
Title Author, 

Year Research Method Key Finding

Application of machine learning techniques to 
build digital twins for long train dynamics 

simulations

Bosso et al., 
2023

Safety index and wheel-
rail forces prediction

LTD simulation
Machine learning 

Surrogate models accurately predict safety indexes 
with low calculation time. 

Vehicle system dynamics in digital twin 
studies in rail and road domains

Bernal et al., 
2023

Real-time derailment risk 
prediction

Field measurement
Machine learning

Effective prediction of derailment risk, improving 
railway operations.

ML model is used to replace lateral/vertical 
vehicle dynamics simulation

(Bernal et al., 2023)
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Literature Review -- International Benchmark
Longitudinal train dynamics (LTD) simulation

 International benchmarking of longitudinal train dynamics simulators: Benchmarking questions. 
Spiryagin, M., Wu, Q., & Cole, C. (2017). Vehicle System Dynamics

 International benchmarking of longitudinal train dynamics simulators: Results. 
Wu et al., (2018). Vehicle System Dynamics

 Method
9 LTD simulators were compared through 4 different train configurations

 Findings
o All simulators had an agreement in simulations
o The major differences lie in the draft gear models
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Research gaps & Objective

Research gaps
 Traditional in-train forces acquisition methods are either time-consuming or expensive

 ATO systems cannot measure in-train forces

 Machine learning has not been applied to predict the in-train forces

 Gap between the ATO measurements and in-train force prediction

Research objective

Development of a data-driven approach by combining ATO measurements with a machine learning/neural network model

to achieve a real-time or on-board prediction of railway in-train forces.
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Methodology -- Overall workflow

due to:

1. In-train force measurement are not included in ATO systems

2. Measurements on serval routes cannot  stand for all the 

general service conditions

3. Randomly generated features (only ML training stage) are 

difficult to be implemented in real-world

 SA-CNN network: learning the underlying relationship

 LTD simulations: generating training data

LTD simulations

Machine 
learning 
(Neural 
network)
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Methodology -- Longitudinal train dynamics (LTD) modelling

Longitudinal train dynamics model (Cole et al., 2012)

𝐹 𝐹 ⁄ 𝐹 𝐹 𝐹 𝑚 𝑎
𝐹 𝐹 𝐹 ⁄ 𝐹 𝐹 𝐹 𝑚 𝑎
𝐹 𝐹 ⁄ 𝐹 𝐹 𝐹 𝑚 𝑎

For the i-th vehicle:
𝐹  : front in-train force
𝐹  : rear in-train force
𝑚  : mass 
𝑎  : acceleration
𝐹 ⁄  : traction/DB effort
𝐹  : gravitational component
𝐹  : curving resistance 
𝐹  : propulsion resistances    

(rolling/air resistances)
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LTD model verification

In-train forces on the 10th coupler 

Vehicle Axle-load 
(tonne)

Axle 
number

Total mass 
(tonne)

Overall length 
(m)

Locomotive 22.33 6 134 22.95

Wagon 32 4 128 15

Configuration Head-end train: 2 locos + 50 wagons 

Heavy haul rain information (Spiryagin et al., 2017)
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LTD input parameters:

 Heavy haul train model:
– Tran configurations
– Rolling stock models
– Coupling system

 Resistance formulas:
– Propulsion resistance 
– Curving resistance
– Gravitational resistance

 Driving behaviours:
– Traction/Dynamic braking effort
– Target speed

 Track line conditions:
– Curvature
– Gradient
– Curve length

LTD output results: 

 In-train forces for each coupler

Methodology -- Service conditions & Target coupler

Critical coupler: 
• No.2 (behind the locomotives)
• Under the severest working conditions
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Methodology -- Training data generation

Track 
segments

C

Curved length L m
50 m entry
transition

50 m exit
transition

G

Top view

Side view

S1: tangent + flat (2 km)

S1 S2 S3

Track line segment

4 km

… …

Service
conditions Track line conditions Driving behaviours

Parameters Curve radii (R) (m) Gradients (G) Curve length (L) 
(m)

Low 𝑉
(km/h)

Middle 𝑉
(km/h)

High 𝑉
(km/h)

Extra high 𝑉
(km/h)

Range [200, 8000] [-1:100, +1:100] [200, 900] [20, 40] [40, 60] [60, 80] [80, 100]

S2: tangent + G (2 - L km)
S3: C + G (L km)
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Methodology -- Training data generation (contd.)
Service

conditions Track line conditions Driving behaviours

Parameters Curve radii (R) (m) Curve length (L) 
(m) Gradients (G) Low 𝑉

(km/h)
Middle 𝑉

(km/h)
High 𝑉
(km/h)

Extra high 𝑉
(km/h)

Range [200, 8000] [200, 900] [-1:100, +1:100] [20, 40] [40, 60] [60, 80] [80, 100]
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Data collected:

 Number of data: 6,431,681 samples (16,000 km) 

 1 sample = 6 features (x, v, a, 𝑭𝒕 𝒅⁄ 𝒃, 𝑮, 𝑪)  and 1 label (in-train force on the 2nd coupler)

 Collection time interval: 0.2 s (discretely)

Methodology -- Training data generation (contd.)

Speed range Biased training data Unbiased training data

Track length (km) Number of samples 
(percentage) Track length (km) Number of samples 

(percentage)

Low 𝑉 4,000 2,668,870 (41.5%) 1,296 800,000 (25%)

Middle 𝑉 4,000 1,650,597 (25.66%) 2,164 800,000 (25%)

High 𝑉 4,000 1,230,608 (19.13%) 3,050 800,000 (25%)

Extra high 𝑉 4,000 881,606 (13.71%) 3,630 800,000 (25%)

Total 16,000 6,431,681 (100%) 10,140 3,200,000 (100%)
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Methodology -- Data pre-processing

Row training data

Step1: Data segmentation Sequences with L time steps

Step 2: Dataset division Training (90%); validation (10%)

Step 3: Data nominalisation Normalise the data values to [-1, 1]

Step 4: Shuffling and Batching Sequences shuffled and grouped into batches with size of N

Pre-processed data

Features/label pair at discrete time points 

Features (N, L, M); label (N, L, 1)
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Methodology -- SA-CNN neural network

MSE loss function: 𝐿𝑜𝑠𝑠 ∑ 𝑦  𝑦

Causal convolution operation: 𝑜𝑢𝑡𝑝𝑢𝑡 𝜎 𝑏 𝑊 ∗ 𝑥

Self-attention operation: 𝑜𝑢𝑡𝑝𝑢𝑡 𝐼,𝑊 ,𝑊 ,𝑊 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 ∗ · ∗ · 𝐼 ∗ 𝑊

Residual connection: 𝑜𝑢𝑡𝑝𝑢𝑡 𝑓 𝑥 𝑥,    where  𝑓 𝑥 𝑎𝑡𝑡𝑒𝑛 𝑐𝑜𝑛𝑣 𝑎𝑡𝑡𝑒𝑛 𝑐𝑜𝑛𝑣 𝑥

(features)
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Results -- Performance comparison with neural networks

• RMSE: root of mean square error w.r.t LTD

• MAE: mean absolute error w.r.t LTD

• R2: coefficient of determination w.r.t LTD

• Training time: time to train the ML model

• Inference time: time to make prediction by the well-trained model

The comparative networks are all 4-layer networks

RMSE (kN) MAE (kN) R Training time (s) Inference time (s)

CNN 5.75 4.16 0.99895 156 4.5

LSTM 4.44 2.53 0.99937 277 3.7

CNN-LSTM 4.88 3.12 0.99924 185 4.8

TCN 4.74 2.83 0.99929 157 4.7

SA-CNN 4.13 2.12 0.99946 169 4.7

𝑅𝑀𝑆𝐸
1
𝑁 𝑦  𝑦  𝑀𝐴𝐸

1
𝑁 𝑦  𝑦 𝑅 1

∑ 𝑦  𝑦
∑ 𝑦  𝑦
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Results -- Performance comparison with LTD simulations

Service condition 
(Case 1)

• Driving behaviours:
Controlled by throttle positions:
generated by speed optimisation software

• Track line conditions: 
Real‐word measured line condition
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Results -- Performance comparison with LTD simulations (contd.)

Service condition
(case 2)

• Driving behaviours:
Controlled by throttle positions:
generated by speed optimisation software

• Track line conditions: 
Reversed direction of the track line used in 
the benchmark
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Results -- Performance comparison with LTD simulations (contd.)

Service condition
(case 3)

• Driving behaviours:
Controlled by speed (throttle positions):
randomly generated target speed profile

• Track line conditions: 
Randomly generated
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Results -- Performance comparison with LTD simulations (contd.)

Service condition
(case 4)

• Driving behaviours:
Controlled by speed (control force):
randomly generated target speed profile

• Track line conditions: 
Randomly generated
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Results -- Performance comparison with LTD simulations (contd.)

Case RMSE (kN) MAE (kN) R2 SA-CNN training time (s) SA-CNN inference time (s) LTD simulation time (s)

Case1 4.13 2.12 0.99946

169

4.7 204

Case 2 4.76 2.41 0.99938 4.9 192

Case 3 7.32 3.9 0.99816 5 225

Case 4 9.53 2.5 0.99848 4.8 307

The well-trained SA-CNN model has the same accuracy as LTD simulations but with significantly reduced prediction time

Real-time in-train force monitoring is feasible
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Limitations
 Lack of field validation

 Limited coupler considered 

 Insufficient working scenarios 

Future plan

Follow-up Researches

Model improvement
An improved predictive 

model for railway in-train 
forces

Input variables

Validation with field measured in-train forces

Working scenarios

• Mass and length of vehicles
• Configurations of trains
• Draft gears models

• Pneumatic braking
• Dumping process
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A data-driven approach (ATO measurements + ML model) was proposed to predict the railway in-train forces

Conclusions

 LTSs were used for establishing the relationship between ATO measurements and in-train forces

 A SA-CNN was developed to learn the relationship between features and labels considering time 
dependency

 The well-trained SA-CNN  are accurate with a quick prediction time

 Proposed approach has the potential to replace the traditional in-train force acquisition methods



Thank you. 


