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Introduction

Flash-butt welding:

= Widely found in Australian heavy-haul
railways

=  Produces smooth and continuous rail
surface to reduce dynamic loadings

Compare with Aluminothermic welding:
= Shorter heating time; less thermal input
= No external material

= Narrower HAZ; Less strength loss
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Fujii M. et al., JFE Technical Report, 2015

Main procedures of flash-butt welding
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Variation of microstructure in HAZ of flash-butt weld
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RCF damages in Australian heavy-haul railways

RCF cracks in flash-butt weld RCF cracks in curved track
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Overall research aim

Applying damage tolerance method to predict RCF surface crack growth in
softened zone of rail welds of curved tracks

(Obtain in-service stress intensity factors histories ' :

_ Crack growth life
.= MBD and FE analysis L
(Obtain material fatigue crack growth data (
= da/dN versus AK,, —) Critical crack size

.
= Crack growth deflection p _
Non-destructive inspection Inspection
interval

» |dentify pre-service and in-service crack sizes

¢
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Numerical study on RCF




Objectives of numerical study

Spin
creepage

Existing studies only reflected the
traction distribution under elastic
contacts and various longitudinal
creepages.

Creepage: wheel slips in longitudinal,
lateral and spin directions; Highly
sensitive to track curvatures.

Verify and quantify the influence of all
the three creepages on the rolling
contact fatigue crack growth driving
force

Lateral
creepage

Longitudinal
creepage
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Methodology

Operation conditions

and macro-geometry

of the track at target
location

simulation

[ Multi-body dynamic

] Creepage

)

Contact point | Contact force

Static finite element WContact pressure
analysis

)
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Modified
FaStrip theory

Contact Surface
pressure | traction

Quasi-static
XFEM analysis

SIFs CTD

Overall crack
driving force
and crack
growth direction
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Multi-body dynamic simulation

Curve Radius (m) 1000 -
Superelevation (mm) 35 InpUt
Gradient (%) -0.15 parameters
— obtained

Top of Rail Friction Coefficient 0.5 from ta rget
Rail Gauge Face Friction Coefficient 0.5 location
Vehicle Speed (km/h) 70 -
Wheel/Rail Contact Angle (Deg) 8.36 -
Lateral Contact Location on Rail (mm) 8.80
Total Wheel Lateral Force (kN) -3.04 — OUtpUt

Results
Total Wheel Vertical Force (kN) 204.57 \
Longitudinal, lateral and spin creepage: v,, vy, ¢ - Standard iron ore wagon with a tyﬁcal

three-piece ‘ride control’ type bogie.
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Static finite element analysis
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Traction distributions based on creepages

. . g . . . — Rolling direction
Traction distribution in slip zone:

Qx(x: y) - _ qxf(x’ y) K [P(X, y)] Slip zone, 2d(y) Stick zone, 2a(y)-2d(y)

e
_ _ I
Qy(x,y) = 2 (6 9) w-[P(x, )] /( L

Length of the strip, 2a(y)

Traction distribution in stick zone:

An example\i

ofstip [N/ /S /[ /LN LSS

Qx(x y)=—,u-k-lP(x y)_p<a(y)'(x_d(y» >'a(y)—d(y)

a(y) —d(y) a(y)

a(y) - (x—d)) . a(y) — d(y)] Total contact patch

Qy(x,y)=—u~[/1-P(x,y)—/1’°P( a0 —diy) Y a0

An example of strip in the modified FaStrip algorithm
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Quasi-static finite element analysis

Z
X
Contact pressure and traction
"[’I‘-Iq[l\ Rolling direction ,1’[- ‘[]\ ’l’[]‘[l\
] \ ' \ ' ' \
1 ) L \ 1 !
Xlag =-1.5 45° xlag =1.5

D > / Normal view

Crack
Fine mesh region (XFEM crack domain)

Coarse mesh region

Normal view

loadings for one complete wheel passage over a 3D
surface crack
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Fine mesh region (0.2mm) with
embedded crack



Studied cases

Case No. Uy vy ¢ (rad/mm) U a, (mm) b, (mm)

1 -0.0015 -0.000578  -0.000215 0.5 2 1.6 7]  From

2 -0.0015 -0.000578  -0.000215 0.5 5 4 [~ target

3 -0.0015 -0.000578  -0.000215 0.5 8 6.4 J location

4 -0.001 0 0 0.3 8 64 __

5 -0.001 -0.001 0 0.3 8 6.4

6 -0.001 -0.001 -0.0001 0.3 8 6.4

7 -0.002 -0.001 -0.0001 0.3 8 6.4

8 -0.003 -0.001 -0.0001 0.3 8 6.4

9 -0.004 -0.001 -0.0001 0.3 8 6.4

10 -0.005 -0.001 -0.0001 0.3 8 6.4 Artificial

11 -0.001 -0.002 -0.0001 0.3 8 64 | cases

12 -0.001 -0.003 -0.0001 0.3 8 6.4

13 -0.001 -0.004 -0.0001 0.3 8 6.4

14 -0.001 -0.005 -0.0001 0.3 8 6.4

15 -0.001 -0.001 -0.0003 0.3 8 6.4

16 -0.001 -0.001 -0.0005 0.3 8 6.4

17 -0.001 -0.001 -0.0007 0.3 8 64 —
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Results - Surface crack growth direction prediction using VCTD criterion

15

Measured Standard Difference
average deviation of | between predicted

deflection measured and measured
angle (°) angles (°) angle (°)

Predicted
10 i crack growth
\' angle (°)

y (mm)
e

o l—Gase 21 6.7 10.7 -14.3
Case 2
Case 3
Extracted field crack 41 1 334 115 '77
_15 1 1 1 1 1
e T em 0 ' Q=g 16.5 7.9 10 8.6

Crack growth direction prediction at target location
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Results - Stress intensity factors histories at crack tip

a) Longitudinal creepage on Kj;. b) lateral creepage on Kj;. ¢) spin creepage on Kj;.
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Results - Stress intensity factors histories at crack tip

a) Longitudinal creepage on Ky;;. b) lateral creepage on Kyy;. €) spin creepage on K.

(a) Cases 6-10 (b) Cases 6,11-14 (c) Cases 5,6,15-17
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Experiment study on RCF




Objectives of experiment study

Crack growth rate data under a Crack growth deflection behaviour

range of mode mixity (AK;;/AK;) due to:

RCF crack growths are often under: » Mode mixity

» Shear stresses due to contact = Variation of microstructures
loadings

= Friction force between crack faces

= Crack opening force due to
entrapped pressurised fluid

= Crack opening force due to
roughness of crack faces

Cross section view of a flash-butt weld
with RCF cracks after etching
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Methodology -- Marker band method

Marker band method:

=  Widely applied in fatigue testing of aerospace
materials: aluminum and titanium alloys

= Alternating loading blocks with different R ratios
= Quantitative fractography

Advantages of marker band method comparing
with ASTM E647:

= No size/geometry requirement
= Data from short crack growth stage
= Compatibility with mixed mode tests

= Accurate determination of both crack growth
distances and AK
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Marker loading block with high R ratio
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Loading block with low R ratio

Fracture surface

Marker band
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Methodology -- Extraction of specimens

The range of cutting locations
Parent rail — Bond line — Parent rail

Specimens cut from

different locations

Rail segment with
flash-butt weld

Softened zone  Softened zone
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Methodology -- Testing rig & specimen designs

Specimen designs:

(@) (b)




Methodology -- AK Calculation
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Capability of simulating irregular crack

geometry and crack front
No stringent requirement of element

Material inhomogeneity reflected by
type and mesh size

Crack geometry represented by an
different mechanical properties

Extended Finite Element Method (XFEM)
inserted planar shell part
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Preliminary results -- Details of some successful tests

No. of cycle No. of cycle

Specimen SpecimenLocation of  Max. Loading High R Low R in high R i low R

No. of cycle till

No. design specimen Loading/kN angle ratio ratio block block break
1 Design a PR 30kN 0° 0.8 0.1 10,000 1,000&5,000 810,000
2 Design a PR 30kN 0° 0.8 0.1 10,000 1,000 584,000
3 Design b PR 15kN 0° 0.8 0.1 10,000 1,000 755,000
4 Design b PR 20kN 0° 0.8 0.1 10,000 1,000 700,000
5 Design b PR 20kN 0° 0.8 0.1 10,000 600 890,000
6 Design b PR 20kN 0° 0.8 0.1 12,000 600 781,000
7 Design a PR 30kN 30° 0.8 0.1 10,000 1,000 320,000
8 Design a PR 15-20-25kN  30° 0.8 0.1 10,000 1,000 2,520,000
9 Design c BL 10kN 0°, 45° 0.8 0.1 10,000 1,000 800,000
10 Designc 3mmto BL  10kN 0°, 45° 0.8 0.1 10,000 1,000 650,000

PR: Parent rail BL: Bond line
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Preliminary results -- Results from mode | tests in parent rail

Marker bands on a fractured rail steel
specimen from mode | fatigue test
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Preliminary results -- Results from mixed mode tests in parent rail

Loading angle of 30° and 45°
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Preliminary results -- Results from tests near bond line

Effect of existing defects and grain boundary cementite /
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Summary

From numerical work:

= The creepages in curved tracks have significant influence on the phase and magnitude of stress
intensity factors histories.

» Creepages, especially spin creepage, should be considered in RCF crack growth prediction.

From experiment work:

» The results proved the applicability of marker band method in obtaining mixed mode crack
growth data in flash-butt welds.

However, there are still many challenges:

= The visibility of marker bands when crack length is smaller than 0.2mm and when loading angle
is larger than 45°.

= How to minimise the influences of existing defects and grain boundary cementite due to welding
process on the visibility of marker bands?
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