

Mixed mode rolling contact fatigue crack growth in flash-butt welds of curved tracks

Presenter: Mr. Yiping Wu, PhD candidate

Main supervisor: Prof. Wenyi Yan

Department of Mechanical & Aerospace Engineering, Monash University

Associate supervisors: Mr. Peter Mutton, Mr. Darrien Welsby, Dr. Pu Huang

Institute of Railway Technology, Monash University

Contents

- Introduction
- Overall research aim
- Numerical study on RCF
- Experiment study on RCF
- Summary

Introduction

Flash-butt welding:

- Widely found in Australian heavy-haul railways
- Produces smooth and continuous rail surface to reduce dynamic loadings

Compare with Aluminothermic welding:

- Shorter heating time; less thermal input
- No external material
- Narrower HAZ; Less strength loss

Main procedures of flash-butt welding

Variation of microstructure in HAZ of flash-butt weld

3mm to bond line Re-austenitised zone

18mm to bond line Spheroidised zone

13mm to bond line Partially-spheroidised zone

100mm to bond line Parent rail

RCF damages in Australian heavy-haul railways

RCF cracks in flash-butt weld

RCF cracks in curved track

Overall research aim

Applying damage tolerance method to predict RCF surface crack growth in softened zone of rail welds of curved tracks

Obtain in-service stress intensity factors histories

MBD and FE analysis

Obtain material fatigue crack growth data

- da/dN versus ΔK_{eq}
- Crack growth deflection

Non-destructive inspection

Identify pre-service and in-service crack sizes

Crack growth life

Critical crack size

Inspection interval

Numerical study on RCF

Objectives of numerical study

- Existing studies only reflected the traction distribution under elastic contacts and various longitudinal creepages.
- Creepage: wheel slips in longitudinal, lateral and spin directions; Highly sensitive to track curvatures.
- Verify and quantify the influence of all the three creepages on the rolling contact fatigue crack growth driving force

Methodology

Locomotive from software Universal Mechanism

Multi-body dynamic simulation

Curve Radius (m)	1000					
Superelevation (mm)	35					
Gradient (%)	-0.15					
Top of Rail Friction Coefficient	0.5					
Rail Gauge Face Friction Coefficient	0.5					
Vehicle Speed (km/h)	70					
Wheel/Rail Contact Angle (Deg)	8.36					
Lateral Contact Location on Rail (mm)	8.80					
Total Wheel Lateral Force (kN)	-3.04					
Total Wheel Vertical Force (kN)	204.57					
Longitudinal, lateral and spin creepage: v_x , v_y , $arphi$						

Input parameters obtained from target location

Output Results

Standard iron ore wagon with a typical three-piece 'ride control' type bogie.

Static finite element analysis

Traction distributions based on creepages

Traction distribution in slip zone:

$$Q_x(x,y) = -\frac{q_{xf}(x,y)}{q_{tf}(x,y)} \cdot \mu \cdot [P(x,y)]$$
$$Q_y(x,y) = -\frac{q_{yf}(x,y)}{q_{tf}(x,y)} \cdot \mu \cdot [P(x,y)]$$

Traction distribution in stick zone:

$$Q_x(x,y) = -\mu \cdot k \cdot \left[P(x,y) - P\left(\frac{a(y) \cdot (x - d(y))}{a(y) - d(y)}, y\right) \cdot \frac{a(y) - d(y)}{a(y)} \right]$$

$$Q_{y}(x,y) = -\mu \cdot \left[\lambda \cdot P(x,y) - \lambda' \cdot P(\frac{a(y) \cdot (x - d(y))}{a(y) - d(y)}, y) \cdot \frac{a(y) - d(y)}{a(y)}\right]$$

An example of strip in the modified FaStrip algorithm

Quasi-static finite element analysis

loadings for one complete wheel passage over a 3D surface crack

Fine mesh region (0.2mm) with embedded crack

Studied cases

Case No.	v_x	v_y	φ (rad/mm)	μ	a _c (mm)	b_c (mm)	_	
1	-0.0015	-0.000578	-0.000215	0.5	2	1.6	From	
2	-0.0015	-0.000578	-0.000215	0.5	5	4	target	
3	-0.0015	-0.000578	-0.000215	0.5	8	6.4	location	Case 1-3
4	-0.001	0	0	0.3	8	6.4		6 600 W
5	-0.001	-0.001	0	0.3	8	6.4		
6	-0.001	-0.001	-0.0001	0.3	8	6.4		500 Eq. (1)
7	-0.002	-0.001	-0.0001	0.3	8	6.4		2 ()
8	-0.003	-0.001	-0.0001	0.3	8	6.4		(mm) x 300 sar that the same and the same an
9	-0.004	-0.001	-0.0001	0.3	8	6.4	Artificia	300 8
10	-0.005	-0.001	-0.0001	0.3	8	6.4	- cases	200 0
11	-0.001	-0.002	-0.0001	0.3	8	6.4	- cases	-4 100 militud
12	-0.001	-0.003	-0.0001	0.3	8	6.4		-4 -6 -6 - 200 applitude W
13	-0.001	-0.004	-0.0001	0.3	8	6.4		-10 -5 0 5 10
14	-0.001	-0.005	-0.0001	0.3	8	6.4		x (mm)
15	-0.001	-0.001	-0.0003	0.3	8	6.4		A (11111)
16	-0.001	-0.001	-0.0005	0.3	8	6.4		Traction distribution of case 1-3
17	-0.001	-0.001	-0.0007	0.3	8	6.4		

Results - Surface crack growth direction prediction using VCTD criterion

Angle name	Predicted crack growth angle (°)	Measured average deflection angle (°)	Standard deviation of measured angles (°)	Difference between predicted and measured angle (°)	
$\alpha_{y=-2}$	2.5	18.1	9.4	-15.6	
$\alpha_{y=2}$	17	11.9	9.7	+5.1	
$\alpha_{y=-5}$	14.9	23.7	12.7	-8.8	
$\alpha_{y=5}$	21	6.7	10.7	-14.3	
$\alpha_{y=-8}$	41.1	33.4	11.5	-7.7	
$\alpha_{y=8}$	16.5	7.9	10	-8.6	

Crack growth direction prediction at target location

Results - Stress intensity factors histories at crack tip

a) Longitudinal creepage on K_{II} . b) lateral creepage on K_{II} . c) spin creepage on K_{II} .

Results - Stress intensity factors histories at crack tip

a) Longitudinal creepage on K_{III} . b) lateral creepage on K_{III} . c) spin creepage on K_{III} .

Experiment study on RCF

Objectives of experiment study

Crack growth rate data under a range of mode mixity $(\Delta K_{II}/\Delta K_{I})$

RCF crack growths are often under:

- Shear stresses due to contact loadings
- Friction force between crack faces
- Crack opening force due to entrapped pressurised fluid
- Crack opening force due to roughness of crack faces

Crack growth deflection behaviour due to:

- Mode mixity
- Variation of microstructures

Cross section view of a flash-butt weld with RCF cracks after etching

Methodology -- Marker band method

Marker band method:

- Widely applied in fatigue testing of aerospace materials: aluminum and titanium alloys
- Alternating loading blocks with different R ratios
- Quantitative fractography

Advantages of marker band method comparing with ASTM E647:

- No size/geometry requirement
- Data from short crack growth stage
- Compatibility with mixed mode tests
- Accurate determination of both crack growth distances and ΔK

Methodology -- Extraction of specimens

Methodology -- Testing rig & specimen designs

Methodology -- ΔK Calculation

Extended Finite Element Method (XFEM)

- Crack geometry represented by an inserted planar shell part
- Material inhomogeneity reflected by different mechanical properties
- Capability of simulating irregular crack geometry and crack front
- No stringent requirement of element type and mesh size

Preliminary results -- Details of some successful tests

Specimen No.	Specimen design	Location of specimen	Max. Loading/kN	Loading angle	High R ratio	Low R ratio	No. of cycle in high R block	No. of cycle in low R block	No. of cycle till break
1	Design a	PR	30kN	0°	8.0	0.1	10,000	1,000&5,000	810,000
2	Design a	PR	30kN	0°	8.0	0.1	10,000	1,000	584,000
3	Design b	PR	15kN	0°	8.0	0.1	10,000	1,000	755,000
4	Design b	PR	20kN	0°	8.0	0.1	10,000	1,000	700,000
5	Design b	PR	20kN	0°	8.0	0.1	10,000	600	890,000
6	Design b	PR	20kN	0°	8.0	0.1	12,000	600	781,000
7	Design a	PR	30kN	30°	8.0	0.1	10,000	1,000	320,000
8	Design a	PR	15-20-25kN	30°	8.0	0.1	10,000	1,000	2,520,000
9	Design c	BL	10kN	0°, 45°	8.0	0.1	10,000	1,000	800,000
10	Design c 3mm to BL		10kN	0°, 45°	8.0	0.1	10,000	1,000	650,000

PR: Parent rail BL: Bond line

Preliminary results -- Results from mode I tests in parent rail

Marker bands on a fractured rail steel specimen from mode I fatigue test

Preliminary results -- Results from mixed mode tests in parent rail

Loading angle of 30° and 45°

Preliminary results -- Results from tests near bond line

Effect of existing defects and grain boundary cementite

Summary

From numerical work:

- The creepages in curved tracks have significant influence on the phase and magnitude of stress intensity factors histories.
- Creepages, especially spin creepage, should be considered in RCF crack growth prediction.

From experiment work:

 The results proved the applicability of marker band method in obtaining mixed mode crack growth data in flash-butt welds.

However, there are still many challenges:

- The visibility of marker bands when crack length is smaller than 0.2mm and when loading angle is larger than 45°.
- How to minimise the influences of existing defects and grain boundary cementite due to welding process on the visibility of marker bands?

Thank you.