Grinding of New Rails

ICRI Assignment

Dan Bjork, Brad Kerchof, Bob Harris

January 19, 2017

Questions

- 1. Is there a point that it is too late for a first grind? Does damage become irreparable at some point?
- 2. What is the role of improper shape and what is the role of mill scale when determining the optimal first grind time?
- 3. Should new rail be rolled with a profile closer to our high rail, low rail or tangent templates? If we use a high rail template, is there an adverse consequence for low rails and tangents?
- 4. What role does rail hardness play?
 - How much work hardening is removed by grinding?
- 5. Can modeling contribute to this assignment?
- 6. What field tests can be conducted?

Standard Practices

North America

- New rail is ground when it fits into the normal grind schedule.
- Occasionally, schedules will be altered to address large out-offace relay projects.
- Transit systems generally grind for removal of mill scale prior to service.
- Australia?
- Europe?
- Others?
- Heavy Haul vs. Transits?

Are there scientific reasons to remove mill scale?

- What would be needed for a test or evaluation?
- Many transit systems require the removal of mill scale prior to service.
- How much should be removed?

New rail after first grind. Some "pock" marks remain. Will these develop further or are they arrested?

CN New Rail Tests

- Test 1 4 Curves (~ 3° curves) with 3 new high rails and 3 new low rails
 - 1 curve no grind
 - 2 different grind strategies on low and high rails
 - Rail was laid during fall 2016
 - Data includes profiles, MRX crack measurements and photographs
 - Measured pre-grind, post-grind & 3 months post grind
 - No definitive results to date
- Test 2
 - High rail on a 5° curve with 2% grade
 - Monthly traffic 3 MGT
 - Ground at 18 and 21 MGT

Post-grind 19 MGT

18 MGT

Additional revenue service tests

CSX tests

- As part of a larger study on RCF growth and preventive grinding 2 low rails, 2 tangent rails and 2 high rails have been replaced and are being monitored.
- Ground within 6 MGT of installation
- Thus far the only variables are degree of curve
 - 1° and 3° for the low rails
 - 1 ° and 6.3 ° for the high rails

Is another revenue service test needed?

- In 1st Q 2017, NS will be laying dual rail on the Narrows sub, which has a number of similardegree curves that could be used in a comparison study.
- Would we learn anything more from another rev. svc. test?

TTCI – Premium Rail Performance Test

 What would damage level have been if ground prior to 257MGT?

- Manual damage assessments
- 6 rail types

Figure 2, top, presents the Visual RCF Assessment results, with the tie-by-tie ratings averaged by rail type.

Wheel-Rail Contact Interface (WRCI) as a method to evaluate wheel/rail contact?

- WRCI is a wheel-rail contact prediction model developed by TTCI that uses:
 - A population of wheel profiles that are representative of the railroad (for NS, WRCI includes 100 wheel sets with a variety of wear conditions ranging from new to 4 mm hollow-worn).
 - The measured rail configurations
 rail profiles, cant angles and gage.
- The model results are presented as histograms showing the percentage of wheels running on each 0.05 inch of rail head width.

WRCI results using a new (unground) high rail, low rail & tangent rail

This is a sample WRCI output showing worn low & high rails; plan is to obtain profiles of new, unground rail and run the model.

WRCI results using new rail with a single pattern 5 grind pass

Placeholder for WRCI graphs

WRCI results using a rail shaped to the desired template

Placeholder for WRCI graphs

Creating a new rail profile

 The shape of the 136RE rail head is defined by four radii. The most oftenmentioned radius is the crown – 8" in the case of the AREMA standard section.

- Should we propose a new profile based on what WRCI identifies as having the most desirable wheel contact? (This shape is likely to be very similar to one of our templates.)
- Which template should we use to define most-desirable contact high, low or tangent?
- Ask rail mills, what is involved in changing the rail head profile?

Action plan

- Continue with revenue service grind comparison tests on CSX and CN; determine whether a third test is needed, on NS.
- Develop a rail profile based on most-desirable wheel/rail contact, using the WRCI model. Determine which template (high, low, tangent) the new rail profile should copy.
- 3. Determine work required for rail mills to change their new-rail profile.
- 4. Prepare recommendation for AREMA Committee 4.